期刊文献+

Diffeomorphic types of complements of nice point arrangements in CP^l

Diffeomorphic types of complements of nice point arrangements in CP^l
原文传递
导出
摘要 We use a new method to study arrangement in CPl,define a class of nice point arrangements and show that if two nice point arrangements have the same combinatorics,then their complements are diffeomorphic to each other.In particular,the moduli space of nice point arrangements with same combinatorics in CPl is connected.It generalizes the result on point arrangements in CP3 to point arrangements in CPl for any l. We use a new method to study arrangement in CP l , define a class of nice point arrangements and show that if two nice point arrangements have the same combinatorics, then their complements are diffeomorphic to each other. In particular, the moduli space of nice point arrangements with same combinatorics in CP l is connected. It generalizes the result on point arrangements in CP 3 to point arrangements in CP l for any l.
出处 《Science China Mathematics》 SCIE 2009年第12期2774-2791,共18页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.10731030) Program of Shanghai Subject Chief Scientist (PSSCS) of Shanghai
关键词 diffeomorphic type hyperplane arrangement lattice isotopy 14F05 14H30 diffeomorphic type hyperplane arrangement lattice isotopy
  • 相关文献

参考文献15

  • 1YAU Stephen S-T.The diffeomorphic types of the complements of arrangements in CP^3Ⅱ[J].Science China Mathematics,2008,51(4):785-802. 被引量:1
  • 2Michael Falk.Homotopy types of line arrangements[J]. Inventiones Mathematicae . 1993 (1) 被引量:1
  • 3Peter Orlik,Louis Solomon.Combinatorics and topology of complements of hyperplanes[J]. Inventiones Mathematicae . 1980 (2) 被引量:1
  • 4Orlik P,Terao H.Arrangements of Hyperplanes. Grundlehren der Mathematischen Wissenschaften . 1992 被引量:1
  • 5Rybnikov G.On the fundamental group of the complement of a complex hyperplane arrangement. . 1998 被引量:1
  • 6Jiang T,Yau S S T.Complement of arrangement of hyperplanes. SinGularities and complex geometry . 1997 被引量:1
  • 7Hartshorne,R.Algebraic Geometry. Graduate Texts in Mathematics, No. 52 . 1977 被引量:1
  • 8Falk,M.The cohomology and fundamental group of a hyperplane complement. Contemporary Mathematics . 1989 被引量:1
  • 9Falk,M.On the algebra associated with a geometric lattice. Advances in Mathematics . 1990 被引量:1
  • 10Jiang,T.,Yau,S. S.-T.Topological invariance of intersection lattices of arrangements in ??2. Bulletin of the American Mathematical Society . 1993 被引量:1

二级参考文献30

  • 1Carrie J. Eschenbrenner,Michael J. Falk.Orlik-Solomon Algebras and Tutte Polynomials[J]. Journal of Algebraic Combinatorics . 1999 (2) 被引量:1
  • 2Michael Falk.Arrangements and cohomology[J]. Annals of Combinatorics . 1997 (1) 被引量:1
  • 3Michael Falk.Homotopy types of line arrangements[J]. Inventiones Mathematicae . 1993 (1) 被引量:1
  • 4William A. Arvola.Complexified real arrangements of hyperplanes[J]. Manuscripta Mathematica . 1991 (1) 被引量:1
  • 5Richard Randell.The fundamental group of the complement of a union of complex hyperplanes: correction[J]. Inventiones Mathematicae . 1985 (3) 被引量:1
  • 6Peter Orlik,Louis Solomon.Unitary reflection groups and cohomology[J]. Inventiones Mathematicae . 1980 (1) 被引量:1
  • 7Peter Orlik,Louis Solomon.Combinatorics and topology of complements of hyperplanes[J]. Inventiones Mathematicae . 1980 (2) 被引量:1
  • 8Falk M.The cohomology and fundamental group of a hyperplane complement. Contemporary Mathematics . 1989 被引量:1
  • 9Falk M.On the algebra associated with a geometric lattice. Advances in Mathematics . 1990 被引量:1
  • 10Falk M.The homotopy types of line arrangements. Inventiones Mathematicae . 1993 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部