摘要
This work successfully prepared nanohybrids by in situ atom transfer radical polymerization (ATRP) of styrene from titanate nanotubes (TNTs). Fourier-transform infrared (FT-IR), pronton nuclear magnetic resonance spectroscopy (1H NMR), and thermal gravimetric analysis (TGA) were used to verify the successful graft of polystyrene (PS) chains from TNTs. Transmission electron microscopy (TEM) dis-played that the obtained PS-g-TNTs nanohybrids had a core-shell structure of TNT core and PS shell. The grafted PS content was well controlled and increased with increasing of the monomer/initiator ratio. Further copolymerization of tert-butyl acrylate (tBA) from the surface of PS-g-TNTs was studied, illus-trating the "living" characteristics of the surface-induced ATRP method used in this work.
This work successfully prepared nanohybrids by in situ atom transfer radical polymerization (ATRP) of styrene from titanate nanotubes (TNTs). Fourier-transform infrared (FT-IR), pronton nuclear magnetic resonance spectroscopy (1H NMR), and thermal gravimetric analysis (TGA) were used to verify the successful graft of polystyrene (PS) chains from TNTs. Transmission electron microscopy (TEM) displayed that the obtained PS-g-TNTs nanohybrids had a core-shell structure of TNT core and PS shell. The grafted PS content was well controlled and increased with increasing of the monomer/initiator ratio. Further copolymerization of tert-butyl acrylate (tBA) from the surface of PS-g-TNTs was studied, illustrating the “living” characteristics of the surface-induced ATRP method used in this work.
基金
Supported by the Special Funds for Major State Basic Research Projects (Grant No. 2005CB623803)
the National Basic Research Program (Grant Nos. 2007CB808000 & 2009CB930400)
the National Natural Science Foundation of China (Grant Nos. 50633010 & 20874060)
the Program for New Century Excellent Talents in University (Grant No. NCET-07-0558)
the Basic Research Foundation of Shanghai Science and Technique Committee (Grant No.07DJ14004)
Shanghai Leading Academic Discipline Project (Grant No. B202)