期刊文献+

Influence of macroscopic graphite particulates on the damping properties of Zn-Al eutectoid alloy 被引量:3

Influence of macroscopic graphite particulates on the damping properties of Zn-Al eutectoid alloy
原文传递
导出
摘要 The paper presents in detail the effects of macroscopic graphite (Gr) particulates on the damping behavior of Zn-Al eutectoid alloy (Zn-Al). Macroscopic defects are graphite particulates with sizes of the order of a millimeter (0.5 mm and 1.0 mm). Macroscopic graphite particulate-reinforced Zn-Al eutectoid alloys were prepared by the air pressure infiltration process. The damping characterization was conducted on a multifunction internal friction apparatus (MFIFA). The internal friction (IF), as well as the relative dynamic modulus, was measured at different frequencies over the temperature range of 20 to 400°C. The damping capacity of the Zn-Al/Gr, with two different volume fractions of macroscopic graphite particulates, was compared with that of bulk Zn-Al eutectoid alloy. The damping capacity of the materials is shown to increase with increasing volume fraction of macroscopic graphite particulates. Two IF peaks were found in the IF-temperature curves. The first is a grain boundary peak, which is associated with the diffusive flux on a boundary between like phases, Al/Al. Its activation energy has been calculated to be 1.13±0.03 eV and the pre-exponential factor is 10?14 s in IF measurements. The second is a phase transition peak, which results from the transformation of Zn-Al eutectoid. In light of internal friction measurements and differential scanning calorimetry (DSC) experiments, its activation energy has been calculated to be 2.36±0.08 eV. The paper presents in detail the effects of macroscopic graphite (Gr) particulates on the damping behavior of Zn-Al eutectoid alloy (Zn-Al). Macroscopic defects are graphite particulates with sizes of the order of a millimeter (0.5 mm and 1.0 mm). Macroscopic graphite particulate-reinforced Zn-Al eutectoid alloys were prepared by the air pressure infiltration process. The damping characterization was conducted on a multifunction internal friction apparatus (MFIFA). The internal friction (IF), as well as the relative dynamic modulus, was measured at different frequencies over the temperature range of 20 to 400℃. The damping capacity of the Zn-Al/Gr, with two different volume fractions of macroscopic graphite particulates, was compared with that of bulk Zn-Al eutectoid alloy. The damping capacity of the materials is shown to increase with increasing volume fraction of macroscopic graphite particulates. Two IF peaks were found in the IF-temperature curves. The first is a grain boundary peak, which is associated with the diffusive flux on a boundary between like phases, Al/Al. Its activation energy has been calculated to be 1.13±0.03 eV and the pre-exponential factor is 10?14 s in IF measurements. The second is a phase transition peak, which results from the transformation of Zn-Al eutectoid. In light of internal friction measurements and differential scanning calorimetry (DSC) experiments, its activation energy has been calculated to be 2.36±0.08 eV.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2009年第1期70-75,共6页 中国科学:物理学、力学、天文学(英文版)
基金 Supported by the Natural Science Foundation of Jiangxi Province of China (Grant No.0550050) the Jiangxi Provincial Department of Education of China (Grant No.13-3-B-04)
关键词 ZN-AL eutectoid ALLOY DAMPING internal friction GRAPHITE PARTICULATE Zn-Al eutectoid alloy damping internal friction graphite particulate
  • 相关文献

参考文献3

二级参考文献2

  • 1袁立羲,Philos Mag,1997年,70卷,107页 被引量:1
  • 2方前锋,金属学报,1996年,32卷,565页 被引量:1

共引文献38

同被引文献19

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部