摘要
通过构造Lyapunov函数,改进了具有饱和发生率和免疫响应的病毒感染数学模型的稳定性分析,得到了当病毒感染的基本再生数R_0<1时,无病平衡点全局渐进稳定;当R_0>1时,在一定条件下,免疫耗竭平衡点和持续带毒平衡点全局渐近稳定的结论.
This paper improves the analysis of global stability of a virus dynamics model with saturation incidence rate and CTL immune response by constructing Lyapunov functions.We derive the basic reproductive number R_0.If R_0 < 1,the disease-free equilibrium is globally asymptotically stable.The immune-free equiUbrium and the infected equiUbrium are globally asymptotically stable if R_0 > 1 and other conditions hold.
出处
《生物数学学报》
2014年第2期303-308,共6页
Journal of Biomathematics
基金
中央高校基本科研业务费专项资金(No.06108040)