期刊文献+

三维弹性快速多极边界元法 被引量:5

Three-dimensional elastic fast multipole BEM
下载PDF
导出
摘要 将静电场多极展开法和广义极小残值法结合于三维弹性问题的边界元法,使其求解的计算量及所需内存量同节点的自由度总数成正比,变革计算结构,加快求解速度以适应大规模数值计算。两者结合的关键点在于边界元法基本解的合理分解,并用广义极小残值法(GMRES)求解方程。轧机支承辊变形场大规模数值算例的总自由度数首次达N=34008并获得成功。清晰地描述了支承辊和工作辊接触区的辊型。 We incorporate fast multipole method and GMRES to Boundary Element Method, and use this method to solve the 3-D elastic problems. In this case, the memory and operations requiremented of a problem with N unknowns are proportional to N, and this method can speed up radically the computation and adapt to large scale numerical computing. The key of the method is mathematical decomposition of fundamental solutions of three-dimensional elasticity. And we use the generalized minimum residual algorithm (GMRES) to find the solution of matrix equation. By a large scale test, we get the balance point of the traditional BEM and the fast multipole BEM up to 1700-1800 degrees of freedom. The fast multipole BEM needs less memories than traditional BEM. This method is effective, and has extensive application prospect.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2004年第4期464-469,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(50075075)资助项目.
关键词 边界元法 多极展开法 广义极小残值法 误差分析 Boundary element method Error analysis Numerical methods Three dimensional
  • 相关文献

参考文献14

  • 1[1]Rokhlin V. Rapid solution of integral equations of classical potential theory[J]. Journal of Computational Physics, 1983,60:187-207. 被引量:1
  • 2[2]Fu Yuhong, Kenneth J. Klimkowski, et al. A fast solution method for three-dimensional many-particle problems of linear elasticity[J]. Int J Numer Meth Engng,1998,42:1215-1229. 被引量:1
  • 3[3]Cheng H, Greengard L, Rokhlin V. A fast adaptive multipole algorithm in three dimensions [J]. J Comput Phys, 1999,155: 468-498. 被引量:1
  • 4[4]Youcef saad, Martin H. Schultz GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems [J]. S J Sci Stat Comput, 1986,7(3): 856-869. 被引量:1
  • 5[6]Greengard L, Rokhlin V. A fast algorithms for particle simulations[J]. J Comput Phys, 1987,73: 325-348. 被引量:1
  • 6[7]Greengard L, Rokhlin V. A new version of fast multipole method for the Laplace equation in three dimensions [J]. Acta Numerica, 1997,6: 229-270. 被引量:1
  • 7[8]Li H B, Han G M, Mang H A. A new method for evaluating singular integrals in stress analysis of solids by the direct boundary element method[J].Int J Numer Meth Engng, 1998,21:2071-2098. 被引量:1
  • 8[9]Arnoldi W E. The principle of minimized iteration in the matrix eigenvalue problem [J]. Quart Appl Math, 1951,9:17-29. 被引量:1
  • 9[10]Eisenstat S C, Elman H C, Schultz M H. Variational iterative methods for nonsymmetric systems of linear equations [J]. SIAM J Numer Anal, 1983,20:345-357. 被引量:1
  • 10[11]Rodin G J. Toward rapid evaluation of the elastic interactions among three-dimensional dislocations [J]. Phil Mag Lett A, 1998,77:187-190. 被引量:1

同被引文献33

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部