期刊文献+

去噪声的加权SVM分类方法 被引量:3

Noise-immune Weighted SVM Classification Algorithm
下载PDF
导出
摘要 针对支持向量机(SVM)本身抗噪声能力低和训练数据类别不均匀会造成分类结果偏向数目较大一类的倾向性等问题,本文提出了去噪声的加权SVM分类方法。在该方法中,通过引入主成分分析方法来降维去除噪声,再通过引入加权系数的方式,补偿了上述倾向性造成的不利影响,提高了预测分类精度。对污水处理过程运行状态的分类实验表明该方法的有效性。 A new classification algorithm based on support vector machine (SVM) theory and principal component analysis (PCA) techniques is presented. Noise is eliminated by PCA to increases the predicted classification accuracy. When training sets with uneven class sizes are used, the result is undesirably biased towards the larger class. The cause of this effect and the compensation method are proposed in this paper. Numerical experiments for classifying operation state of wastewater treatment processes show that the proposed algorithm can be used to obtain better classification accuracy than the original SVM.
出处 《电路与系统学报》 CSCD 2004年第4期97-102,共6页 Journal of Circuits and Systems
基金 国家863基金资助项目2002AA412010)
关键词 支持向量机 主成分分析 分类精度 污水处理过程 support vector machine principal component analysis classification accuracy wastewater treatment processes
  • 相关文献

参考文献12

  • 1VapnikV著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.5-155. 被引量:3
  • 2Joachims T. Text categorization with support vector machines [R]. Technical report, LS VIII Number 23, University of Dortmund, German, 1997. 被引量:1
  • 3Edgar Osuna, Robert Freund, Federico Girosi. Training support vector machines: an application to face detection [A]. IEEE Conference on Computer Vision and Pattern Recognition [C]. Puerto Rico, USA, 1997, 130-136. 被引量:1
  • 4Cai Yu-Dong, Liu Xiao-Jun, Xu Xue-biao, et al. Prediction of protein structural classes by support vector machines [J]. Computers and Chemistry, 2002, 26(3): 293-296. 被引量:1
  • 5Chew Hong-Gunn, Crisp D J, Bogner R E, et al. Target detection in radar imagery using support vector machines with training size biasing [A]. Proceedings of the sixth international conference on control, Automation, Robotics and Vision [C]. Singapore, 2000. 被引量:1
  • 6Chew Hong-Gunn, Bogner Robert E, Lim Cheng-Chew. Dual nu-support vector machine with error rate and training size biasing [A]. Proceedings of 26th IEEE ICASSP 2001 [C]. Salt Lake City, USA, 2001, 1269-1272. 被引量:1
  • 7Sch?lkopf B., Smola A., Williamson R. C. Et al. New support vector algorithms [J]. Neural Computation, 2000, 12(5): 1207-1245 被引量:1
  • 8Chang Chih-Chung, Lin Chih-Jen. Training nu-support vector classifiers: theory and algorithms [J]. Neural Computation, 2001, 13(9): 2119-2147. 被引量:1
  • 9Lin Chun-Fu, Wang Sheng-De. Fuzzy support vector machines [J]. IEEE Transactions on Neural Networks, 2002, 13(2): 464-471. 被引量:1
  • 10方开泰编著..实用多元统计分析[M].上海:华东师范大学出版社,1989:411.

共引文献2

同被引文献21

  • 1李卓,刘斌,刘铁男,朱秀华,魏坤.支持向量机及其在油田生产中的应用[J].大庆石油学院学报,2005,29(3):77-79. 被引量:7
  • 2张琨,曹宏鑫,严悍,刘凤玉.支持向量机在网络异常入侵检测中的应用[J].计算机应用研究,2006,23(5):98-100. 被引量:9
  • 3VAPNIK V. The nature of statistical learning theory [ M ]. New York: Springer, 1995. 被引量:1
  • 4JAPKOWICZ N, STEPHEN S. The class imbalance problem: a systematic study [ J ]. Intelligent Data Analysis, 2002,6 ( 5 ) : 429- 449. 被引量:1
  • 5CHAWLA N V, BOWYER K W, HALL L O,et al. Smote: synthetic minority over-sampling technique [ J ]. Journal of Artificial Intelligence Research, 2002,16 ( 3 ) :321- 357. 被引量:1
  • 6REHAN A, STEPHEN K, NATHALIE J. Applying support vector machines to imbalanced datasets [ C ]//Proc of the 15th European Conference on Machines Learning, LNAI3201. [ S. l. ] : Springer-Verlag, 2004:39-50. 被引量:1
  • 7LING C, LI C. Data mining for direct marketing problems and solutions[ C]//Proc of the 4th International Conference on Knowledge Discovery and Data Ming. New York: AAAI Press,1998:73-79. 被引量:1
  • 8MIKA S, RATSCH G, WESTON J, et al. Fisher discriminant analysis with kernels[ C ]//Proc of Neural Networks for Signal Processing IX. [ S.l. ] : IEEE Press, 1999:41-48. 被引量:1
  • 9CHANG C, LIN C J. A library for support vector machine[ EB/OL]. (2001) [2006]. http://www. csie. ntu. tw/-cjlin/ libsvm. 被引量:1
  • 10WidrowB WalachE 刘树棠 韩崇昭 译.自适应逆控制[M].西安交通大学出版社,2000.. 被引量:10

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部