期刊文献+

基于相似个体拥挤与Fibonacci法的遗传算法

Genetic Algorithm Based on Similar Individuals Crowded with Fibonacci Method
下载PDF
导出
摘要 由于传统遗传算法在应用中会出现"早熟",局部寻优能力较差,求解结果精度不高等缺点,提出了相似个体排挤方法和Fibonacci算子,给出了用相似个体的拥挤与Fibonacci算子相结合的改进遗传算法.数值仿真表明改进后的算法优于传统遗传算法和当前一些改进遗传算法,提高了遗传算法的局部搜索能力和收敛速度,并且能以较大概率搜索到优化问题的全局最优解. Traditional genetic algorithms will appear "premature" in the application,local searching capability is poor,and solving results accuracy is disadvantages,a similar individuals crowding and Fibonacci operator was given,operators combinig with similar individuals crowded Fibonaccithe improved genetic algorithm.Numerical simulations show that the improved algorithm is better than traditional genetic algorithm and improved genetic algorithm,the local search ability and convergence speed of the genetic algorithm was raised,and globally optimal solution was obtained by the greater search probability.
作者 范小勤
出处 《兰州文理学院学报(自然科学版)》 2013年第4期10-12,17,共4页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
关键词 Fibonacci算子 相似个体 拥挤机制 遗传算法 Fibonacci operator similar individuals crowded mechanism genetic algorithm
  • 相关文献

参考文献6

二级参考文献40

  • 1高学金,王普,孙崇正,易建强,张亚庭,张会清.基于实数编码的自适应遗传算法及应用[J].北京工业大学学报,2007,33(2):144-149. 被引量:15
  • 2Zitzler E,Laumanns M, Bleuler S. A tutorial on evolutionary multiobjective optimization [ C ]//Srensen K, Gandibleux X, Sevaux M, et al. Lecture Notes in Economics and Mathematica Systems, Meta-heuristics for Multiobjective Optimization. [S.l.] :Springer,2004,35:3-37. 被引量:1
  • 3Rosenberg R S. Simulation of genetic populations with biochemical properties [ D ]. University of Michigan, Ann Harbor, Michigan, 1967. 被引量:1
  • 4Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms[ D ]. Vanderbilt University, 1984. 被引量:1
  • 5Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms [ C]//Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, Lawrence Erlbaum, 1985:93-100. 被引量:1
  • 6Fonseca C M, Fleming J. Genetic algorithms for multiobjective optimization :formulation,discussion and generalization [ C]//Stephanie F. Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, California. University of Illinois at Urbana-Champaign : Morgan Kauffman Publishers, 1993:416-423. 被引量:1
  • 7Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms [ J ]. Evolutionary Computation, 1994,2 (3) :221-248. 被引量:1
  • 8Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization [ C ]//Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, Piscataway, New Jersey, IEEE Service Center, 1994,1:82-87. 被引量:1
  • 9Zitzler E, Thiele L Muhiobjective optimization using evolutionary, algorithms--a comparative study [M]//Eiben A E. Parallel Problem Solving from Nature V. Amsterdam : Springer-Verlag, 1998:292-301. 被引量:1
  • 10Zitzler E ,Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach [ J ]. IEEE Transactions on Evolutionary Computation, 1999,3(4) :257-271. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部