期刊文献+

集值向量拟均衡问题的ε-Global对偶 被引量:1

ε-Global Duality of Set-Value Vector Quasi-Equilibrium Problem
下载PDF
导出
摘要 引入具集值映射的ε-Global向量拟均衡问题及其对偶问题,在广义凸性与广义Slater条件下,讨论ε-Global向量拟均衡问题的ε-Global有效解与其对偶问题的ε-Global有效解之间的关系,得到了ε-Global向量拟均衡问题的对偶定理。 I ε-Global vector quasi-equilibrium problem and its dual problem with set-valued mappings are introduced and the relationships between ε-Global efficient solutions of ε-Global vector quasi-equilibrium problem and its dual problem are discussed under the generalized convexity and generalized Slater conditions.A duality theorem of ε-Global vector quasi-equilibrium problem is given out.
出处 《济南大学学报(自然科学版)》 CAS 北大核心 2013年第3期309-314,共6页 Journal of University of Jinan(Science and Technology)
基金 国家自然科学基金(11061023 11201216)
关键词 向量拟均衡问题 ε-Global对偶 ε-Global有效解 ε-Global次梯度 集值映射 vector quasi-equilibrium problem ε-Global duality ε-Global efficient solution ε-Global subgradient set-valued mapping
  • 相关文献

参考文献8

  • 1O. Chaldi,Z. Chbani,H. Riahi.Equilibrium Problems with Generalized Monotone Bifunctions and Applications to Variational Inequalities[J]Journal of Optimization Theory and Applications,2000(2). 被引量:1
  • 2Blum E,Oettli W.From optimizaiton and variational inequalities to equilibrium problemsThe Mathematics Student,1994. 被引量:1
  • 3JahnJMathematical vector optimization in partially ordered spaces. 被引量:1
  • 4BREZIS H,NIREMBEROI L,STAMPACCHIA G.A remark on KyFan’’s minimax principleBollettino Della Unione MatematicaItaliana,1972. 被引量:1
  • 5GIANNESI F.Vector variational inequa-lities and vector equilibriamathematical theories,1999. 被引量:1
  • 6MORGANA E,JACINTO O,SCHEIMBERG S.Duality for general-ized equilibrium problemsJournal of Global Optimization,2008. 被引量:1
  • 7BIGI G,CASTELLAN M,KASSAYA G.A dualview of equilibriumproblemsMath Anal Appi,2008. 被引量:1
  • 8SACH P H,TUAN L A,MINH N B.Approximate duality for vectorquasi-equilibrium problems and applicationsNonlinear Analy-sis,2010. 被引量:1

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部