期刊文献+

基于Taylor变换法的转子系统非线性动力学特性 被引量:1

Taylor Transform Method for Nonlinear Dynamic Characteristics of Rotor System
下载PDF
导出
摘要 在考虑了非线性油膜力的基础上,建立了转子系统的非线性动力学模型,引入了求解非线性微分方程的Taylor变换法,并将转子振动系统原分析模型变换为离散域内的代数方程组,采用Taylor变换法,对第一跨转子振动系统动力学特性进行非线性分析,求得转子系统的响应,找出转子系统的分岔规律,用分岔图、频谱图、庞加莱映射、轴心轨迹等多种方法表现了转子系统的非线性现象,结果表明考虑油膜力影响后,转子系统的运动状态随转速增加由周期至二倍周期再至周期再至拟周期,或者经周期运动直接至混沌运动· Considering the nonlinear oil-film force, a nonlinear dynamic model of rotor system was established, with Taylor transform method introduced to transform the original analysis model of rotor vibration system into a set of algebraic equations in discrete domain and analyze nonlinearly the dynamic characteristics of the 1st-span rotor vibration system. The responses of the rotor system were thus obtained with the bifurcation rule was found out. The nonlinear phenomena of rotor system were represented by bifurcation diagram, frequency spectrum, Poincare mapping and trajectory of the journal center of the system. The results indicated that the motion state of rotor system will change in such a sequence as periodic-double periodic-periodic-quasi-periodic or change directly from periodic to chaos with increasing rotate speed as the film force taken into account.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第8期786-789,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(50275024)
关键词 非线性动力系统 Taylor变换法 转子系统 油膜力 分岔 混沌 nonlinear dynamic system Taylor transform method rotor system oil-film force bifurcation chaos
  • 相关文献

参考文献10

  • 1Chatterjee S, Millik A K. Bifurcations and chaos in autonom-ous self-excited oscillators with impact damping[J]. Journal of Sound and Vibration, 1996,191(4):539-562. 被引量:1
  • 2Liu H Z, Appleton E, Su Z X, et al. Dynamic modeling and solution for a transmission mechanism with flexible support[A]. 16th Biennial Conference on Mechanical Vibration and Noise[C]. New York: ASME, 1997.1-9. 被引量:1
  • 3Shaw S W. The dynamics of a harmonically excited system having rigid amplitude constraints. Part 2: Chaotic motions and global bifurcations[J]. Transactions of the ASME Journal of Applied Mechanics, 1985,52(2):459-464. 被引量:1
  • 4Chan D S H. Nonlinear analysis of rotor dynamic instabilities in high-speed turbo machinery[J]. Journal of Engineering for Gas Turbines and Power, 1996,118:122-129. 被引量:1
  • 5Kim Y B, Noah S T. Bifurcation analysis for a modified Jeffcott rotor with bearing clearances[J]. Nonlinear Dynamics, 1990,1(3):221-243. 被引量:1
  • 6Chu F,Zhang Z. Bifurcation and chaos in a rub-impact Jeffcott rotor system[J]. Journal of Sound and Vibration, 1998,210(1):1-18. 被引量:1
  • 7Chiou J S, Tzeng J R. Application of the Taylor transform to nonlinear vibration problems[J]. Transactions of the ASME, Journal of Vibration and Acoustics, 1996,118:83-87. 被引量:1
  • 8Zheng Z C, Su Z X, Han Ray PS, et al. A new approach for the numerical integration of nonlinear dynamic systems[R]. ASME DE108.New York: ASME, 2000.1-9. 被引量:1
  • 9罗跃纲,李振平,曾海泉,闻邦椿.非线性刚度转子系统碰摩的混沌行为[J].东北大学学报(自然科学版),2002,23(9):895-898. 被引量:13
  • 10苏志霄,郑兆昌,高永毅.非线性动力系统线性模型数值计算的Taylor变换法[J].力学学报,2002,34(4):586-593. 被引量:7

二级参考文献4

共引文献18

同被引文献7

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部