期刊文献+

摄动离散Riccati矩阵方程解上界估计 被引量:1

Estimation of upper bounds for solution matrix of perturbed discrete Riccati matrix equation
下载PDF
导出
摘要 针对摄动参数为带有范数有界不确定性的摄动离散Riccati矩阵方程解的特征值的估计问题,利用矩阵不等式和特征值等性质,得到了摄动离散Riccati矩阵方程解的特征值新的上界,这种表示只利用了特征值及奇异值计算,避免了复杂的高阶代数方程求解.数值算例验证表明:研究结果是有效的,与现有结果比较,该结果具有更小的保守性.该结果在控制理论和状态估计问题的研究中具有更加重要的理论和实用研究价值. The estimation for the solution matrix of perturbed discrete Riccati matrix equation is investigated in this study.The perturbed parameters of this equation show the characteristics of norm bounded uncertainty.The new upper bounds of solution matrix for perturbed discrete Riccati matrix equation are derived using matrix inequalities and its eigenvalue.Using eigenvalue and singular value to obtain the upper bounds avoids solving complex higher-order equations.The study results are verified by numerical examples.Compared with the existing result,it shows less conservative.This study result has significant theoretical and practical value in the study on control theory and state estimation problem.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2012年第6期905-908,共4页 Journal of Liaoning Technical University (Natural Science)
基金 黑龙江省教育厅科学技术研究基金资助项目(12523048)
关键词 摄动离散Riccati矩阵方程 特征值 奇异值 范数有界不确定性 矩阵不等式 摄动参数 解矩阵 估计 perturbed discrete Riccati matrix equation eigenvalue singular value norm bounded uncertainty matrix inequality perturbed parameters solution matrix estimation
  • 相关文献

参考文献6

二级参考文献28

  • 1王德玉,夏冰,陈东彦.离散时间代数Riccati方程解矩阵的上下界[J].哈尔滨理工大学学报,2005,10(6):28-31. 被引量:3
  • 2陈东彦,侯玲.摄动离散矩阵Lyapunov方程解的估计[J].控制理论与应用,2006,23(5):830-832. 被引量:5
  • 3Richard Davies,Peng Shi,Ron Wiltshire,New upper solution bounds of the discrete algebratc Riccati matrix equation[J] ,Computional and Applied Mathematics,2008(213):307-315. 被引量:1
  • 4Lee C H.Solution bounds of the continuous Riccati matrix equation[J].IEEE Transactions on Automatic Control,2003,48(8):1409-1413. 被引量:1
  • 5Moheimani S O R,Petersen I R.Optimal quadratic guaranteed cost control of a class of uncertain time-delay systems[J].IEEE Proceedings of Control Theory Application,1997,144(2):183-188. 被引量:1
  • 6Rugh W J.Linear system theory[M].Upper Saddle River,NJ:PrenticeHall Inc,1993:237-241. 被引量:1
  • 7Yasuda K,Hiral K.Upper and Iower bounds on the solution of the algebraic Riccati equation[J].IEEE Transactions on A utomatic Control,1979,24(3):483-487. 被引量:1
  • 8Mironenko V I. On the method that allows one to determine the initial data of periodic solution of differential systems and to compare the mappings for a period[J].Differential Equations,1980,14(ll):1985- 1994. 被引量:1
  • 9Mironenko V I. Reflecting function and periodic solution of the differential equations[M]. Minsk:University Press, 1986:12-26. 被引量:1
  • 10Alisevich L A .On linear system with triangular reflective function[J]. Differ.Eq.,1983,19(8):1446-1449. 被引量:1

共引文献9

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部