期刊文献+

基于改进粒子群算法的管道动强度可靠性优化设计 被引量:2

Pipe Dynamic Reliability Optimization Based on Improved Particle Swarm Algorithm
下载PDF
导出
摘要 本文对某型飞机液压管道采用的带压缩因子的粒子群算法(PSO)进行了改进,并对其支撑位置进行动力学优化。使用映射方法来离散粒子的位置,分别利用"和声搜索"法和"飞回技术"法对粒子群算法的边界条件和约束条件进行处理,改进了粒子群算法。并有效结合有限元(FEM)和改进的粒子群算法,以管道的疲劳累积损伤可靠度为约束,以一阶固有频率最大为目标对支撑位置进行动力学优化。经过优化,提高了管道的一阶固有频率,降低了振动水平,增强了系统的抗振能力。 For a certain type of aircraft hydraulic pipe,the discrete particle swarm algorithm with constriction factor is adopted to optimize the locations of supports.The particle swarm optimization is improved by using the mapping method to discrete the positions of particles,using the 'fly-back mechanism' technique to handle the boundary constraints and the harmony search algorithm to handle the problem-specific constraints.An interface program between the improved particle swarm optimization algorithm and ANSYS is developed.Under the constraints of reliability,the locations of the supports are optimized with the first natural frequency as the objective function.The optimized pipeline has higher first natural frequency,lower dynamic stress and better anti-vibration capability.
出处 《航空制造技术》 北大核心 2012年第20期84-87,共4页 Aeronautical Manufacturing Technology
基金 陕西省教育厅科学研究计划项目(2010jk593) 高等学校学科创新引智计划项目(B07050) 西工大基础研究基金(JC201238)资助
关键词 改进粒子群算法 可靠度 支撑 优化 Improved particle swarm optimization Reliability Support Optimization
  • 相关文献

参考文献3

二级参考文献27

  • 1张峻,柯映林.序列响应面方法在覆盖件成形过程优化中的应用研究[J].汽车工程,2005,27(2):246-250. 被引量:20
  • 2陈涛,李光耀.覆盖件拉延模工艺补充及压料面的参数化设计新方法[J].机械工程学报,2006,42(5):69-74. 被引量:24
  • 3OHATA T, NAKAMURA Y, KATAYAMA T, et al. Development of optimum process design system by numerical simulation[J]. Journal of Materials Processing Technology, 1996, 60: 543-548. 被引量:1
  • 4NACEUR H, GOU Y Q, BATOZ J L, et al. Optimization of blank restraining forces to improve the global quality of stamping parts[C]//Proceedings of the Fourth International Conference on Numerical Simulation, NUMISHEET'99, Besancon, France, 1999: 517-521. 被引量:1
  • 5YANG R J, GU L. Application of descriptive sampling and metamodeling methods for optimal design and robustness of vehicle structures[J]. AIAA, 2002, 1 321: 1-7. 被引量:1
  • 6KOCH P N, YANG R J, GU L. Design for six sigma through robust optimization[J]. Struct. Multidist. Optim., 2004, 26: 235-248. 被引量:1
  • 7KENNEDY J, EBERHART R C. Particle swarm optimization[C]//Proc. IEEE International Conference on Neural Networks, Piscataway, NJ: IEEE Press, 1995: 1 942-1 948. 被引量:1
  • 8EBERHART R C, SHI Y. Particle swarm optimization: Developments, applications and resources[C]//Proc, of Congress on Evolutionary Computation 2001, Piscataway, NJ: IEEE Press, 2001: 81-86. 被引量:1
  • 9PARSOPOULOS K E, VARHATIS M N. Particle swarm optimization method in multiobjective problems[C]//Proc of ACM Symp. on Applied Computing, Madrid: ACM Press, 2002: 603-607. 被引量:1
  • 10HU X, EBERHART R C. Multiobjective using dynamic neighborhood particle swarm optimization[C]//Proc, of Congress Evolutionary Computation, Honolulu, Hawaii, USA, Piscataway, NJ: IEEE Press, 2002:1 677-1 681. 被引量:1

共引文献70

同被引文献18

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部