期刊文献+

跳扩散模型中随机利率和随机波动下期权定价 被引量:2

Option pricing in jump-diffusion model with stochastic volatility and stochastic interest rate
下载PDF
导出
摘要 为合理刻画股价实际变化趋势,在双指数跳扩散模型中通过允许利率随机和波动率随机建立了合理的市场模型;然后利用鞅方法推导了随机利率、随机波动率下双指数跳扩散模型的欧式期权定价的闭式解;最后通过数值模拟分析了模型的主要参数对期权定价的影响.数值结果显示:所提模型能够较好地刻画股价实际变化趋势,股票收益和波动率负相关,随机利率对短期到期期权影响几乎可以忽略,而对长期到期期权价格影响显著. To describe the real volatility of stock returns,this paper provides a rational model through allowing for stochastic interest rate and stochastic volatility rate in the double exponential jump-diffusion model.Subsequently,a closed-form solution for European call option is derived under the proposed model.Furthermore,the effects of main parameters on option prices are analyzed using numerical simulation.Simulations show that the model is suitable for modeling real-market changes.Stock returns are negatively correlated with volatility and stochastic interest rate has a significant impact on long term option values.
作者 张素梅
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2012年第3期421-424,共4页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(11171266) 陕西省教育厅基金资助项目(11JK0491) 陕西省教育厅基金资助项目(11JK0493)
关键词 随机波动率 随机利率 双指数跳扩散过程 期权定价 Fourier逆变换 特征函数 Feynman-Kac定理 鞅方法 stochastic volatility rate stochastic interest rate double exponential jump-diffusion process option pricing Fourier inversion transform
  • 相关文献

参考文献15

  • 1Black F,Scholes M. The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,(03):637-654. 被引量:1
  • 2Merton R C. Option pricing when underlying process of stock returns is discontinuous[J].Journal of Financial Economics,1976,(1/2):124-144. 被引量:1
  • 3Glasserman P,Kou S G. The term structure of simple forward rates with jump risk[J].Mathematical Finance,2003,(03):383-410.doi:10.1016/j.comppsych.2010.11.011. 被引量:1
  • 4Johannes M. The statistical and economic role of jumps in continuous-time interest rate models[J].Journal of Finance,2004,(01):227-260. 被引量:1
  • 5Zhao J. Long time behaviour of stochastic interest rate models[J].Insurance:Mathematics and Economics,2009,(03):459-463.doi:10.1016/j.insmatheco.2009.01.001. 被引量:1
  • 6Heston S L. A closed form solution for option with stochastic volatility with application to bond and currencies[J].Review of Financial Studies,1993,(02):327-343.doi:10.1093/rfs/6.2.327. 被引量:1
  • 7Espinosa F,Vives J. A volatility-varying and jump-diffusion merton type model of interest rate risk[J].Insurance:Mathematics and Economics,2006,(01):157-166.doi:10.1016/j.insmatheco.2005.08.010. 被引量:1
  • 8Jiang G J. Testing options pricing models with stochastic volatility,random jump and stochastic interest rate[J].J Economet,2008,(02):352-370.doi:10.1016/j.jeconom.2008.04.009. 被引量:1
  • 9Louis O S. Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates:applications of Fourier inversion methods[J].Mathematical Finance,1997,(04):413-424. 被引量:1
  • 10G.Bakshi,C.Cao,Zhiwu Chen. Pricing and hedging long-term options[J].Journal of Econometrics,2000,(1-2):277-318.doi:10.1016/S0304-4076(99)00023-8. 被引量:1

二级参考文献26

  • 1Black F, Scholes M. The pricing of options and corporate liabilities[J]. JournalofPoliticalEconomy, 1973, 81(3):637-654. 被引量:1
  • 2Merton R C. Option pricing when underlying process of stock returns is discontinuous[J]. Journal of Financial Economics, 1976, 3(1/2): 124- 144. 被引量:1
  • 3Mancini C. The European options hedge perfectly in a Poisson Gaussian stock market model [J]. Applied Mathematical Finance, 2002, 9(2): 87-102. 被引量:1
  • 4Duffle D, Pan J, Singleton K. Transform analysis and option pricing for affine jump-diffusions[J]. Econometrica, 2000, 68(6): 1 343-1 376. 被引量:1
  • 5Kou S. A jump-diffusion model for option pricing[J]. Management Science, 2002,48(8): 1 086-1 101. 被引量:1
  • 6Brace A, Gatarek D, Musiela M. The market model of interest rate dynamics[J]. Mathematical Finance, 1997, 7(2): 127-155. 被引量:1
  • 7Jamshidian F. LIBOR and swap market models and measures[J]. Finance and Stoehastics, 1997, 1(4): 293-330. 被引量:1
  • 8Miltersen K R, Sandmann K, Sondermann D. Closed-form solutions for term structure derivatives with lognormal interest rates[J]. J. Finance, 1997, 52(1): 409-430. 被引量:1
  • 9Michael Johannes. The statistical and economic role of jumps in continuous-time interest rate models[J]. The Journal of Finance, 2004, 59(1): 227-260. 被引量:1
  • 10Paul Glasserman, Kou S G. The term structure of simple forward rates with jump risk[J]. Mathematical Finance, 2003, 13(3): 383-410. 被引量:1

共引文献9

同被引文献19

  • 1郭培栋,张寄洲.随机利率下双币种期权的定价[J].上海师范大学学报(自然科学版),2006,35(6):25-29. 被引量:10
  • 2马奕虹,邓国和.股票价格服从跳扩散过程的双币种期权定价[J].广西师范大学学报(自然科学版),2007,25(3):52-55. 被引量:3
  • 3PROTFER P.Stochastic integration and differential equations[M]. Springer- Verlag,New York.1991. 被引量:1
  • 4KOU S.A jump-diffusion model for option prieing[J].Management Science, 2002,48(8): 1086-1101. 被引量:1
  • 5SEPP A.Analyfical pricing of double-barrier options under a double-exponential jump diffusion process:Applications of Laplace transform[J].International Journal of Theoretical and Applied Finance, 2004,7(2): 151 - 175. 被引量:1
  • 6CAI Ni,CHEN N,WAN X W.Pricing double-barrier options under a flexible jump diffusion model[J].Operations Research Letters,2009,37(3): 163-167. 被引量:1
  • 7FUH C D,LUO S F,YEN J F.Pricing discrete path-dependent options under a double exponential jump-diffusion model[J].Joumal of Banking and Finanee,2013,37(8):2 702-2 713. 被引量:1
  • 8ZI-IANG Sumei.European option pricing based on double exponential jump-diffusion process model with stochastic interest rate Liaoning Joumalof TechnicalUniversity(Natural Science),2011,30(4):627-630. 被引量:1
  • 9ZHANG Sumei.Option pricing in jump-diffusion model with stochastic volatility and stochastic interest rate[J].Liaoning Journal of Technical University(Natural Science),2012,31(3):421-424. 被引量:1
  • 10CHANG J J,CHEN S N,WANG C C,et al.Barrier caps and floors under the LIBOR market model with double exponential jumps[J].Joumal of Derivatives,2014,21 (4): 7-30. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部