摘要
本文仅讨论有关实对称矩阵的正定性问题,提出了实对称正定矩阵的逆矩阵、两个实对称正定矩阵的和都是正定的,同时给出了两个实对称正定矩阵的乘积是实对称正定矩阵的一个充分必要条件,最后给出了实对称正定矩阵在分块矩阵中的一个结论。
This paper discusses the positive definiteness of real symmetric matrices.Providing that the inverse matrix of a real symmetric positive matrix is positive definite,the sum of two real symmetric positive matrices is positive definite.At the same time giving a sufficient and necessary condition that two real symmetric positive matrices product is positive definite.Finally this paper provides a conclusion of real symmetric positive matrices in block matrices.
出处
《佳木斯教育学院学报》
2011年第4期99-99,共1页
Journal of Jiamusi Education Institute
关键词
实对称矩阵
正定性
逆矩阵
分块矩阵
real symmetric matrices
positive definiteness
inverse matrix
block matrices