期刊文献+

二阶摆型振动方程奇调和解的存在性 被引量:1

Existence of Odd-Harmonic Solutions for Second Order Pendulum-Type Oscillation Equations
下载PDF
导出
摘要 研究了二阶摆型振动方程奇调和解的存在性.运用Schwarz不等式估计方程解的先验界技巧和Leray-Schauder度理论得到了方程奇调和解的存在性定理,将Mawhin所给出的力函数周期性条件减弱为线性增长条件,从而改进了JMawhin的结果. The existence of odd-harmonic solutions for a second order pendulum-type oscillation equation was studied. The existence theorems of solutions were obtained by using the technique of Schwarz's inequality to take prior estimate for solutions of the equation and the Leray-Schauder degree theory. In addition, the periodic condition for a force function given by Mawhin was weakened to the condition of linear growth. As a result, the some relative results given by J Mawhin were improved.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2004年第4期491-494,共4页 Journal of China University of Mining & Technology
关键词 振动方程 奇调和解 LERAY-SCHAUDER度 函数 摆型振动 pendulum-type oscillation equation odd-harmonic solution Leray-Schauder degree
  • 相关文献

参考文献8

  • 1Mawhin J. Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations[J]. J Diff Equa, 1984(52):264-287. 被引量:1
  • 2Nakajima F. Some conservative pendulum equation with forcing term[J]. Nonlinear Analysis, 1998(34):1117-1121. 被引量:1
  • 3Mawhin J. The forced pendulum: a paradigm for nonlinear analysis and dynamical systems[J]. Expo Math, 1988(6):271-287. 被引量:1
  • 4Ortega R. Counting periodic solutions of the forced pendulum equation[J]. Nonlinear Analysis, 2000(42):1055-1062. 被引量:1
  • 5Pinsky M A, Zevin A A. Oscillations of a pendulum with a periodically varying length and a model of swing[J]. J Non-Linear Mechanics, 1999(34):105-109. 被引量:1
  • 6Mawhin J. Equations intégrales et solutions péri-odiques des systèmes différentiels non linéaires[J]. Acad Roy Belg Bull Cl Sci, 1969,55(5):934-947. 被引量:1
  • 7Deimling K. Nonlinear functional analysis[M]. New York: Springer-Verlag, 1985. 被引量:1
  • 8Hardy G H, Littlewood J E, Pòlya G. Inequalities[M]. London: Cambridge University Press, 1952. 被引量:1

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部