期刊文献+

Extracellular matrices for gastrointestinal surgery:Ex vivo testing and current applications 被引量:2

Extracellular matrices for gastrointestinal surgery:Ex vivo testing and current applications
下载PDF
导出
摘要 AIM:To assess the effects of bile and pancreatic juice on structural and mechanical resistance of extracellular matrices(ECMs) in vitro.METHODS:Small-intestinal submucosa(SIS),porcine dermal matrix(PDM),porcine pericardial matrix(PPM) and bovine pericardial matrix(BPM) were incubated in human bile and pancreatic juice in vitro.ECMs were examined by macroscopic observation,scanning electron microscopy(SEM) and testing of mechanical resistance.RESULTS:PDM dissolved within 4 d after exposure to bile or pancreatic juice.SIS,PPM and PDM retained their integrity for > 60 d when incubated in either digestive juice.The effect of bile was found to be far more detrimental to mechanical stability than pancreatic juice in all tested materials.In SIS,the loss of mechanical stability after incubation in either of the digestive secretions was less distinct than in PPM and BPM [mFmax 4.01/14.27 N(SIS) vs 2.08/5.23 N(PPM) vs 1.48/7.89 N(BPM)].In SIS,the extent of structural damage revealed by SEM was more evident in bile than in pancreatic juice.In PPM and BPM,structural damage was comparable in both media.CONCLUSION:PDM is less suitable for support of gastrointestinal healing.Besides SIS,PPM and BPM should also be evaluated experimentally for gastrointestinal indications. AIM:To assess the effects of bile and pancreatic juice on structural and mechanical resistance of extracellular matrices(ECMs) in vitro.METHODS:Small-intestinal submucosa(SIS),porcine dermal matrix(PDM),porcine pericardial matrix(PPM) and bovine pericardial matrix(BPM) were incubated in human bile and pancreatic juice in vitro.ECMs were examined by macroscopic observation,scanning electron microscopy(SEM) and testing of mechanical resistance.RESULTS:PDM dissolved within 4 d after exposure to bile or pancreatic juice.SIS,PPM and PDM retained their integrity for > 60 d when incubated in either digestive juice.The effect of bile was found to be far more detrimental to mechanical stability than pancreatic juice in all tested materials.In SIS,the loss of mechanical stability after incubation in either of the digestive secretions was less distinct than in PPM and BPM [mFmax 4.01/14.27 N(SIS) vs 2.08/5.23 N(PPM) vs 1.48/7.89 N(BPM)].In SIS,the extent of structural damage revealed by SEM was more evident in bile than in pancreatic juice.In PPM and BPM,structural damage was comparable in both media.CONCLUSION:PDM is less suitable for support of gastrointestinal healing.Besides SIS,PPM and BPM should also be evaluated experimentally for gastrointestinal indications.
出处 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第32期4031-4038,共8页 世界胃肠病学杂志(英文版)
关键词 Extracellular matrix Intestinal regeneration Ex-vivo testing Gastrointestinal surgery Gastrointestinal fistula Bioscaffolding Extracellular matrix Intestinal regeneration Ex-vivo testing Gastrointestinal surgery Gastrointestinal fistula Bioscaffolding
  • 相关文献

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部