摘要
The general expressions of constitutive equations for isotropic elastic damaged materials were derived directly from the basic law of irreversible thermodynamics. The limitations of the classical damage constitutive equation based on the well-known strain equivalence hypothesis were overcome. The relationships between the two elastic isotropic damage models (i.e. single and double scalar damage models) were revealed. When a single scalar damage variable defined according to the microscopic geometry of a damaged material is used to describle the isotropic damage state, the constitutive equations contain two 'damage effect functions', which describe the different influences of damage on the two independent elastic, constants. The classical damage constitutive equation based on the strain equivalence hypothesis is only the first-order approximation of the general expression. It may be unduly simplified and may fail to describe satisfactorily the damage phenomena of practical materials.
The general expressions of constitutive equations for isotropic elastic damaged materials were derived directly from the basic law of irreversible thermodynamics. The limitations of the classical damage constitutive equation based on the well-known strain equivalence hypothesis were overcome. The relationships between the two elastic isotropic damage models (i.e. single and double scalar damage models) were revealed. When a single scalar damage variable defined according to the microscopic geometry of a damaged material is used to describle the isotropic damage state, the constitutive equations contain two 'damage effect functions', which describe the different influences of damage on the two independent elastic, constants. The classical damage constitutive equation based on the strain equivalence hypothesis is only the first-order approximation of the general expression. It may be unduly simplified and may fail to describe satisfactorily the damage phenomena of practical materials.
基金
theNationalNaturalScienceFoundationofChina ( 1 9972 0 0 5)
theMajorSci enceandTechnologyProjectsoftheMinistryofCommunicationofPRChina