期刊文献+

THE METHOD OF MULTIPLE SCALES APPLIED TO THE NONLINEAR STABILITY PROBLEM OF A TRUNCATED SHALLOW SPHERICAL SHELL OF VARIABLE THICKNESS WITH THE LARGE GEOMETRICAL PARAMETER

THE METHOD OF MULTIPLE SCALES APPLIED TO THE NONLINEAR STABILITY PROBLEM OF A TRUNCATED SHALLOW SPHERICAL SHELL OF VARIABLE THICKNESS WITH THE LARGE GEOMETRICAL PARAMETER
下载PDF
导出
摘要 Using the modified method of multiple scales, the nonlinear stability of a truncated shallow spherical shell of variable thickness with a nondeformable rigid body at the center under compound loads is investigated. When the geometrical parameter k is larger, the uniformly valid asymptotic solutions of this problem are obtained and the remainder terms are estimated. Using the modified method of multiple scales, the nonlinear stability of a truncated shallow spherical shell of variable thickness with a nondeformable rigid body at the center under compound loads is investigated. When the geometrical parameter k is larger, the uniformly valid asymptotic solutions of this problem are obtained and the remainder terms are estimated.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第10期1198-1209,共12页 应用数学和力学(英文版)
关键词 shallow shell of variable thickness nonlinear stability modified method of multiple scales shallow shell of variable thickness nonlinear stability modified method of multiple scales
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部