摘要
High-resolution spectral radiance measurements were taken by a spectral radiometer on board a heli- copter over the US Oklahoma Southern Great Plain near the Atmospheric Radiation Measurements (ARM) site during August 1998. The radiometer has a spectral range from 350 nm to 2500 nm at 1 nm resolution The measurements covered several grass and cropland scene types at multiple solar zenith angles. Detailed atmospheric corrections using the Moderate Resolution Transmittance (MODTRAN) radiation model and in-situ sounding and aerosol measurements have been applied to the helicopter measurements in order to re- trieve the surface and top of atmosphere (TOA) Bidirectional Reflectance Distribution Function (BRDF) characteristics. The atmospheric corrections are most significant in the visible wavelengths and in the strong water vapor absorption wavelengths in the near infrared region Adjusting the BRDF to TOA requires a larger correction in the visible channels since Rayleigh scattenng contributes significantly to the TOA reflectance. The opposite corrections to the visible and near infrarred wavelengths can alter the radiance dif- ference and ratio that many remote sensing techniques are based on, such as the normalixed difference vege- tation index (NDVI). The data show that surface BRDFs and spectral albedos are highly sensitive to the veg- etation type and soldr zenith angle while BRDF at TOA depends more on atmospheric conditions and the vi ewing geometry. Comparison with the Clouds and the Earth's Radiant Energy System (CERES) derived clear sky Angular Distribution Model (ADM) for crop and grass scene type shows a standard deviation of 0.08 in broadband anisotropic function at 25°solar zenith angle and 0.15 at 50° solar zenith angle, respectively.
High-resolution spectral radiance measurements were taken by a spectral radiometer on board a heli- copter over the US Oklahoma Southern Great Plain near the Atmospheric Radiation Measurements (ARM) site during August 1998. The radiometer has a spectral range from 350 nm to 2500 nm at 1 nm resolution The measurements covered several grass and cropland scene types at multiple solar zenith angles. Detailed atmospheric corrections using the Moderate Resolution Transmittance (MODTRAN) radiation model and in-situ sounding and aerosol measurements have been applied to the helicopter measurements in order to re- trieve the surface and top of atmosphere (TOA) Bidirectional Reflectance Distribution Function (BRDF) characteristics. The atmospheric corrections are most significant in the visible wavelengths and in the strong water vapor absorption wavelengths in the near infrared region Adjusting the BRDF to TOA requires a larger correction in the visible channels since Rayleigh scattenng contributes significantly to the TOA reflectance. The opposite corrections to the visible and near infrarred wavelengths can alter the radiance dif- ference and ratio that many remote sensing techniques are based on, such as the normalixed difference vege- tation index (NDVI). The data show that surface BRDFs and spectral albedos are highly sensitive to the veg- etation type and soldr zenith angle while BRDF at TOA depends more on atmospheric conditions and the vi ewing geometry. Comparison with the Clouds and the Earth's Radiant Energy System (CERES) derived clear sky Angular Distribution Model (ADM) for crop and grass scene type shows a standard deviation of 0.08 in broadband anisotropic function at 25°solar zenith angle and 0.15 at 50° solar zenith angle, respectively.
作者
Yaping Zhou, Ken C. Rutledge Analytical Service & Material, Inc, Hampton, VA, USA Thomas P. Charlock Atmospheric Sciences Division, NASA Langley Research Center Hampton, VA, USA Norman G. Loeb, Seiji Kato Hampton University, Hampton, VA, USA
基金
Corresponding author address: Dr. Yaping Zhou, Analysis Branch, Climate Prediction Center,NCEP/ NWS / NOAA, WWB, 5200 Auth Roa