期刊文献+

Bioscillation and Birhythmicity in the H_2O_2-KSCN-CuSO_4-NaOH System

Bioscillation and Birhythmicity in the H_2O_2-KSCN-CuSO_4-NaOH System
下载PDF
导出
摘要 Two kinds of different mechanistic oscillations can be displayed in the H_2O_2-KSCN-CuSO_4-NaOH system. One discovered by this study is the pH oscillation in a continuous flow stirred tank reactor(CSTR) resulting from the oxidation of KSCN. The other is the oscillation of H_2O_2 decomposition in both CSTR and batch reactors(reported by Orbáin in 1986). Under appropriate experimental conditions, the system exhibits a birhythmicity in a CSTR. Two different pH oscillations are reported here. The pH oscillations which accompany the decomposition of H_2O_2 exist in the batch reactor and the CSTR at a high flowrate, but the pH oscillations in a CSTR at a low flowrate originates from proton positive and negative feedback in the oxidation of KSCN. The oscillation of non-catalyzed oxidation of KSCN by hydrogen peroxide in a CSTR can be found. Also we have observed whether Cu^(2+) exists or not in the batch system, the pH increases to near neutral ultimately after pH drops twice. Two kinds of different mechanistic oscillations can be displayed in the H_2O_2-KSCN-CuSO_4-NaOH system. One discovered by this study is the pH oscillation in a continuous flow stirred tank reactor(CSTR) resulting from the oxidation of KSCN. The other is the oscillation of H_2O_2 decomposition in both CSTR and batch reactors(reported by Orbáin in 1986). Under appropriate experimental conditions, the system exhibits a birhythmicity in a CSTR. Two different pH oscillations are reported here. The pH oscillations which accompany the decomposition of H_2O_2 exist in the batch reactor and the CSTR at a high flowrate, but the pH oscillations in a CSTR at a low flowrate originates from proton positive and negative feedback in the oxidation of KSCN. The oscillation of non-catalyzed oxidation of KSCN by hydrogen peroxide in a CSTR can be found. Also we have observed whether Cu^(2+) exists or not in the batch system, the pH increases to near neutral ultimately after pH drops twice.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2001年第3期299-304,共6页 高等学校化学研究(英文版)
基金 Supported by NSFC(29573109) and Research fund of CUMT.
关键词 Bioscillation and birhythmicity pH oscillation H_2O_2 decomposition Bioscillation and birhythmicity, pH oscillation, H_2O_2 decomposition
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部