摘要
The maize pollens were implanted with seven different doses of 30 keV N+ beam respectively, The genomic DNA polymorphism from treated pollens were analyzed with 104 primers by using RAPD respectively. The results showed that N^+ beam-induced mutation of maize pollens can result in the change of their DNA bases. The mutation is not properly random and its frequency increases with a rise in 30 keV N+ beam doses. It is conformed with A-G transformation, which is one of the most important factors in DNA bases induced by N+ beam.
The maize pollens were implanted with seven different doses of 30 keV N+ beam respectively, The genomic DNA polymorphism from treated pollens were analyzed with 104 primers by using RAPD respectively. The results showed that N^+ beam-induced mutation of maize pollens can result in the change of their DNA bases. The mutation is not properly random and its frequency increases with a rise in 30 keV N+ beam doses. It is conformed with A-G transformation, which is one of the most important factors in DNA bases induced by N+ beam.