期刊文献+

Local classification of stable geometric solutions of systems of quasilinear first-order PDE 被引量:1

Local classification of stable geometric solutions of systems of quasilinear first-order PDE
原文传递
导出
摘要 Systems of quasilinear first order PDE are studied in the framework of contact manifold. All of the local stable geometric solutions of such systems are classified by using versal deformation and the classification of stable map germs of type ∑1 in singularity theory. Systems of quasilinear first order PDE are studied in the framework of contact manifold. All of the local stable geometric solutions of such systems are classified by using versal deformation and the classification of stable map germs of type Σ1 in singularity theory.
作者 李兵 李养成
出处 《Science China Mathematics》 SCIE 2002年第9期1163-1170,共8页 中国科学:数学(英文版)
基金 This work was supported by the National Natural Science Foundation of China (Grant No. 19971035).
关键词 versal deformation system of quasilinear first order PDE stable local geometric solution CLASSIFICATION versal deformation, system of quasilinear first order PDE, stable local geometric solution, classiflcation.
  • 相关文献

参考文献7

  • 1Shyuichi Izumiya,Georgios T. Kossioris.Geometric Singularities for Solutions of Single Conservation Laws[J].Archive for Rational Mechanics and Analysis.1997(3) 被引量:1
  • 2Shyuichi Izumiya,Wei-Zhi Sun.Singularities of Solution Surfaces for Quasilinear First-Order Partial Differential Equations[J].Geometriae Dedicata.1997(3) 被引量:1
  • 3Shyūichi Izumiya.Generic bifurcations of varieties[J].Manuscripta Mathematica (-).1984(1-3) 被引量:1
  • 4John N. Mather.Stability of C{su∞} mappings, III: Finitely determined map-germsmappings, III: Finitely determined map-germs[J].Publications Mathématiques de L’Institut des Hautes Scientifiques.1968(1) 被引量:1
  • 5Nakane,S.Formation of shocks for a single conservation law, SIAM J[].Math Anal.1988 被引量:1
  • 6Kruzkov,S. N.First order quasilinear equations in several independent variables, Math.USSR[].Sbornik.1970 被引量:1
  • 7Jennings,G.Piecewise smooth solutions of a single conservation law exist, Adv[].Indagationes Mathematicae.1979 被引量:1

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部