摘要
The shock wave compression behavior of the open cell aluminum foam with relative density of 0.396 was studied through planar impact experiments. Using polyvinylidene fluoride(PVDF) piezoelectric gauge technique, the stress histories and propagation velocities of shock wave in the aluminum foam were measured and analyzed. The results show that the amplitude of shock wave attenuates rapidly with increasing the propagation distance in the aluminum foam, and an exponential equation of the normalized peak stress vs propagation distance of shock wave is established, the attenuation factor in the equation is (0.286.) Furthermore, the Hugoniot relation, v_s=516.85+(1.27v_p,) for the aluminum foam is determined by empirical fit to the experimental Hugoniot data.
The shock wave compression behavior of the open cell aluminum foam with relative density of 0.396 was studied through planar impact experiments. Using polyvinylidene fluoride(PVDF) piezoelectric gauge technique, the stress histories and propagation velocities of shock wave in the aluminum foam were measured and analyzed. The results show that the amplitude of shock wave attenuates rapidly with increasing the propagation distance in the aluminum foam, and an exponential equation of the normalized peak stress vs propagation distance of shock wave is established, the attenuation factor in the equation is (0.286.) Furthermore, the Hugoniot relation, v_s=516.85+(1.27v_p,) for the aluminum foam is determined by empirical fit to the experimental Hugoniot data.
基金
Project( 0 30 4 4 6 0 2)supportedbytheNaturalScienceFoundationofAnhuiProvince