期刊文献+

A local probability exponential inequality for the large deviation of an empirical process indexed by an unbounded class of functions and its application

A local probability exponential inequality for the large deviation of an empirical process indexed by an unbounded class of functions and its application
原文传递
导出
摘要 A local probability exponential inequality for the tail of large deviation of an empirical process over an unbounded class of functions is proposed and studied. A new method of truncating the original probability space and a new symmetrization method are given. Using these methods, the local probability exponential inequalities for the tails of large deviations of empirical processes with non-i.i.d. independent samples over unbounded class of functions are established. Some applications of the inequalities are discussed. As an additional result of this paper, under the conditions of Kolmogorov theorem, the strong convergence results of Kolmogorov on sums of non-i.i.d. independent random variables are extended to the cases of empirical processes indexed by unbounded classes of functions, the local probability exponential inequalities and the laws of the logarithm for the empirical processes are obtained.
出处 《Science China Mathematics》 SCIE 2004年第6期821-830,共10页 中国科学:数学(英文版)
基金 This work was supported partially by the National Natural Science Foundation of China(Grant No.19661001) the Social Science Foundation of Ministry of Education of China.
关键词 empirical process large deviation unbounded class of functions local probability exponential inequality 实验过程;大偏差;功能的无界的班;本地概率;指数;不平等;
  • 相关文献

参考文献10

  • 1Kam C. Yuen,Lixing Zhu,Dixin Zhang.Comparing k Cumulative Incidence Functions Through Resampling Methods[J].Lifetime Data Analysis.2002(4) 被引量:1
  • 2R. M. Dudley,Walter Philipp.Invariance principles for sums of Banach space valued random elements and empirical processes[J].Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete.1983(4) 被引量:1
  • 3Dudley,R. M.Central limit theorems for empirical measures, Ann[].Probab.1978 被引量:1
  • 4Wu,L. M.Large deviations moderate deviations and LIL for empirical processes, Ann[].Probab.1994 被引量:1
  • 5Talagrand,M.Sharper bounds for Gaussian and empirical processes, Ann[].Probab.1994 被引量:1
  • 6Devroye,L.Bounds for the uniform deviation of empirical measures, J[].Journal of Multivariate Analysis.1982 被引量:1
  • 7Alexander,K. S.Probability inequalities for empirical processes and a law of the iterated logarithm, Ann[].Probab.1984 被引量:1
  • 8Talagrand,M.New concentration inequalities on product spaces, Invent[].Mathematica Journal.1996 被引量:1
  • 9Bennett,G.Probability inequalities for the sum of independent random variables[].Journal of the American Statistical Association.1962 被引量:1
  • 10Alexander,K. S.Correction: Probability inequalities for empirical processes and a law of the iterated logarithm, Ann[].Probab.1987 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部