摘要
Roll定理、Lagrange中值定理和Cauchy中值定理成立于函数在 [a、b]上连续、在 (a、b)上可导 ,其中Roll定理还要求函数在区间端点处的函数值相等 .若将Roll定理可导的条件改为左导数 (或右导数 )存在且连续 ,则此三个定理也成立 .
The theorem of Roll and the mean value theorem of Larange & Cauchy are true when the function is continuous and can be reckoned in . The theorem of Roll still requires that functional value between extreme points should be equal. Given that the theorem of Roll reckoning condition be changed into the existence & continuation of left or right, then the above 3 theorems remain true.
出处
《玉溪师范学院学报》
2002年第3期54-55,共2页
Journal of Yuxi Normal University
关键词
左导数
右导数
连续
left derivatives
right derivatives
continuation