期刊文献+

多自由度系统振动的Barnett-Lothe矩阵

Barnett-Lothe's Matrices in multi-freedom vibration systems
下载PDF
导出
摘要 利用Stroh理论的本征方程与多自由度振动的方程非常相似特点,将Stroh理论推广到多自由度系统振动的分析研究中,获得多自由度振动的Barnett-Lothe矩阵及Barnett-Lothe积分公式,避免了求解特征值和特征向量的麻烦。 For its eigenfunctions are similar with multi-freedom vibration equations,the Stroh's theory was extended to multi-freedom vibration systems.By using the Stroh's theory,the Barnett-Lothe's Matrices and the BarnettLothe's integral formula in multi-freedom system was given,which can be obtained from M,K,C matrices.This formula avoid studying eigenvalues of vibration equations.
出处 《辽宁科技大学学报》 CAS 2006年第5期471-474,共4页 Journal of University of Science and Technology Liaoning
基金 国家自然科学基金项目(10372003) 辽宁省教育厅科学研究计划项目(2004F051)
关键词 Barnett-Lothe矩阵 Stroh理论 本征值 本征向量 Barnett-Lothe's Matrices Stroh's theory eigenvalues eigenfunctions
  • 相关文献

参考文献9

  • 1[1]STROH A N.Dislocation and cracks in anisotropic elasticity[J].Phil Mag,1958,7:625-646. 被引量:1
  • 2[2]TING T C T.Anistropic elasticity:Theory and applications[M].New York:Oxford University Press,1996. 被引量:1
  • 3[3]WANG M Z,TING T C T,YAN G P.The anisotropic elastic semi-infinite strip[J].Q Appl Math,1993,51 (2):283-297. 被引量:1
  • 4[4]GAO C F,WANG M Z.Collinear permeable cracks between dissimilar piezoelectric materials[J].Int J Solids and Structure,2000,37(36):4969-4986. 被引量:1
  • 5[5]TING T C T,YAN G P.The anistropic elastic solid with an elliptic hole and rigid inclusion[J].Int J Solids Structrues,1991,27(15):1879-1894. 被引量:1
  • 6[6]HWU C B,TING T C T.Two-dimensional problems of the anistropic elastic solids with an elliptic inclusion[J].Q J Mech Appl Math,1989,42(4):553-572. 被引量:1
  • 7[7]LU P.Stroh type formalism for unsymmetric laminated plate[J].Mech Res Comm,1994,21(3):249-254. 被引量:1
  • 8[8]BARNETT D M,LOTHE J.Synthesiss of the sextic and the integral formalism for dislocations,Green's functions,and surface waves in anistropic elastic solids[J].Physical Norvegica,1973,17(1):13-19. 被引量:1
  • 9王敏中著..高等弹性力学[M].北京:北京大学出版社,2002:374.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部