期刊文献+

标的资产价格服从跳—扩散过程的具有随机寿命的未定权益定价 被引量:2

STOCHASTIC LIFE CONTINGENT CLAIM WITH THE UNDERLYING ASSET OBEYING JUMP-DIFFUSION PROCESS
下载PDF
导出
摘要 本文在假设被终止或取消的风险与重大信息导致的标的资产价格跳跃的风险为非系统风险的情况下 ,应用无套利资本资产定价 ,推导出了标的的资产的价格服从跳—扩散过程具有随机寿命的未定权益满足的偏微分方程 ,然后应用 Feynman- kac公式获得了未定权益的定价公式。 This paper supposes that the risk caused by stochastic stopping is nonsystematic, uses the principle of no arbitrage capital asset pricing, deduces the partial differential equation that contingent claim obeys when the underlying asset price obeys jump diffusion process and contingent claim has stochastic life; then, obtains the pricing formula by the Feynman kac formula.
出处 《经济数学》 2002年第2期21-27,共7页 Journal of Quantitative Economics
关键词 跳-扩散过程 随机寿命 未定权益 Feynman-kac公式 Jump diffusion, stochastic life, contingent claim, Feynman kac formula
  • 相关文献

参考文献5

  • 1[1]Peter, L. Jennergren. , A class of option with stochastic life and an extention of the Black-scholes formula[J]. European Journal of operational Research, 91(1996), 229- 234. 被引量:1
  • 2[2]Peng, S. A, A nonlinear Feynman-kac formula and application[M]. World Scientific. Singapore, 173- 184,1992. 被引量:1
  • 3[3]Robert, C. Merton. Option pricing when underlying stock returns are discontinuous [J]. Journal of financial economics, 3(1996), 125- 144. 被引量:1
  • 4[4]Black, F. and M. Scholes., The pricing of options and corporate liabilities[J]. Journal of political economy, 81(1973) ,637-659. 被引量:1
  • 5[5]Lamberton, D. Lapeyre B. Introducion to stochastic caculus applied to finance. Chapman and Hall,1996. 被引量:1

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部