摘要
Based on the daily observational precipitation data of 147 stations in the Yangtze River basin for 1960-2005,and the projected daily data of 79 grids from ECHAM5/MPI-OM in the 20th century,time series of precipitation extremes which contain annual maximum(AM)and Munger index(MI)were constructed.The distribution feature of precipitation extremes was analyzed based on the two index series.Research results show that(1)the intensity and probability of extreme heavy precipitation are higher in the middle Mintuo River sub-catchment,the Dongting Lake area,the mid-lower main stream section of the Yangtze River,and the southeastern Poyang Lake sub-catchment;whereas,the intensity and probability of drought events are higher in the mid-lower Jinsha River sub-catchment and the Jialing River sub-catchment;(2)compared with observational data,the averaged value of AM is higher but the deviation coefficient is lower in projected data,and the center of precipitation extremes moves northwards;(3)in spite of certain differences in the spatial distributions of observed and projected precipitation extremes,by applying General Extreme Value(GEV)and Wakeby(WAK)models with the method of L-Moment Estimator(LME)to the precipitation extremes,it is proved that WAK can simulate the probability distribution of precipitation extremes calculated from both observed and projected data quite well.The WAK could be an important function for estimating the precipitation extreme events in the Yangtze River basin under future climatic scenarios.
出处
《气候变化研究进展》
CSCD
2008年第z1期27-31,36,共6页
Climate Change Research