期刊文献+

2-D Current Field Numerical Simulation Integrating Yangtze Estuary with Hangzhou Bay 被引量:12

2 D Current Field Numerical Simulation Integrating Yangtze Estuary with Hangzhou Bay
下载PDF
导出
摘要 In this paper, integrating the Yangtze Estuary with the Hangzhou Bay, a 2-D velocity field model is established. In the model, fine self-adaptive grids are employed to adapt to the complicated coastal shape. The hydrodynamic equations satisfied by two contravariant components of velocity vector and surface elevation in non-orthogonal curvilinear coordinates are used. In each momentum equation the coefficients before the two partial derivatives of surface elevation with respect to variables of alternative direction coordinates have different orders of magnitude, i. e., the derivative with the larger coefficient may play a more important role than that with the smaller one. With this advantage, the ADI scheme can be easily employed. The hydrodynamic factors include tidal current, river runoff and wind-induced current. In terms of tidal current, seven main constituents in the area are considered in the open boundaries. The verifications of surface elevation process and current velocity process in the spring tide and in the neap tide show that the model can preferably reflect current fields in the area. Through the simulation of Lagrangian residual current fields in summer and in winter, the paths of the exchange of water and sediment between the Yangtze Estuary and the Hangzhou Bay are elementarily discussed. In this paper, integrating the Yangtze Estuary with the Hangzhou Bay, a 2-D velocity field model is established. In the model, fine self-adaptive grids are employed to adapt to the complicated coastal shape. The hydrodynamic equations satisfied by two contravariant components of velocity vector and surface elevation in non-orthogonal curvilinear coordinates are used. In each momentum equation the coefficients before the two partial derivatives of surface elevation with respect to variables of alternative direction coordinates have different orders of magnitude, i. e., the derivative with the larger coefficient may play a more important role than that with the smaller one. With this advantage, the ADI scheme can be easily employed. The hydrodynamic factors include tidal current, river runoff and wind-induced current. In terms of tidal current, seven main constituents in the area are considered in the open boundaries. The verifications of surface elevation process and current velocity process in the spring tide and in the neap tide show that the model can preferably reflect current fields in the area. Through the simulation of Lagrangian residual current fields in summer and in winter, the paths of the exchange of water and sediment between the Yangtze Estuary and the Hangzhou Bay are elementarily discussed.
出处 《China Ocean Engineering》 SCIE EI 2000年第1期89-102,共14页 中国海洋工程(英文版)
基金 National Natural Science Foundation of China under contract No.49776279 National Excellent Youth Foundation of China under contract No.49825161
关键词 Yangtze Estuary Hangzhou Bay current field self-adaptive grids numerical simulation Yangtze Estuary Hangzhou Bay current field self-adaptive grids numerical simulation
  • 相关文献

参考文献1

同被引文献111

引证文献12

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部