期刊文献+

NOVEL METHOD SOLVING NUMERICAL INSTABILITIES IN TOPOLOGY OPTIMIZATION

NOVEL METHOD SOLVING NUMERICAL INSTABILITIES IN TOPOLOGY OPTIMIZATION
下载PDF
导出
摘要 Numerical instabilities are often encountered in FE solution of continuumtopology optimization. The essence of the numerical instabilities is given from the inverse partialdifferential equation (PDE) point of view. On the basis of the strict mathematical theory, a novelmethod, named as window filter and multi-grid method, which solves the numerical instabilities, isproposed. Convergent analyses and a numerical example are presented. Numerical instabilities are often encountered in FE solution of continuumtopology optimization. The essence of the numerical instabilities is given from the inverse partialdifferential equation (PDE) point of view. On the basis of the strict mathematical theory, a novelmethod, named as window filter and multi-grid method, which solves the numerical instabilities, isproposed. Convergent analyses and a numerical example are presented.
出处 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第1期22-26,共5页 中国机械工程学报(英文版)
基金 National Natural Science Foundation of China (No.59975015) and Doctoral Foundation of Ministry of state Education of China (No.1
关键词 Topology optimization Gaussian windows Checkerboard pattern Topology optimization Gaussian windows Checkerboard pattern
  • 相关文献

参考文献6

  • 1[1]Bendsoe M P, Kikuchi N. Generation optimal topologies in optimal design using a homogenization methos. Comp. Meth. Appl. Mech. Engng., 1988,71:197~224 被引量:1
  • 2[2]Diaz A R, Sigmund O. Checkerboard patterns in layout optimization. Struct. Optim., 1995,10:40~45 被引量:1
  • 3[3]Jog C S, Haber R B. Stabilities of finite element models for distributed-parameter optimization and topology design. Comput. Methods Appl. Mech. Engng., 1996, 130:203~226 被引量:1
  • 4[4]Haber R B, Jog C S, Bends(e M P. A new approach to variable-topology shape design using a constraint on perimeter. Struct. Optim., 1996,11:1~12 被引量:1
  • 5[5]Eschenauer H A, Kobelev V V, Schumacher A. Bubble method for topology and shape optimization of structures. Struct. Optim., 1994, 8:42~51 被引量:1
  • 6[6]Sigmund O, Petersson J. Numerical instabilities in topology optimization:A survey on procedures dealing with checkerboards, mes-dependence and local minima. Struct. Optim., 1998, 16:68~75 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部