期刊文献+

变量正态相关时模糊可靠性灵敏度分析的矩方法 被引量:1

Improving Moment Method for Fuzzy Reliability Sensitivity Analysis with Correlative Normal Variables
下载PDF
导出
摘要 针对变量相关情况下失效域具有模糊性的渐变结构系统,文章提出了相关变量模糊可靠性灵敏度分析的矩方法。通过离散模糊失效概率积分区域,将相关变量模糊可靠性灵敏度分析问题转化为离散区域中具有相关变量的随机可靠性灵敏度分析问题,后者可通过将相关变量转化为不相关变量后,利用矩方法求得。论文详细给出了所提方法的基本原理和实现步骤,并采用3个算例对所提方法的精度和效率进行了说明。 Aim.After reviewing past research papers such as Refs.1 and 2,we propose making further improvements.Section 2 of the full paper explains in some detail the moment method that includes our improvements.It is divided into four subsections.Subsection 2.1 is:the basic idea.Subsection 2.2 is:the discretization of fuzzy region.Subsection 2.3 is:transforming the fuzzy reliability sensitivity of the average correlation normal variables into random reliability sensitivity.Subsection 2.4 is:the sensitivity of fuzzy ...
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2009年第4期486-491,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(10572117) 新世纪优秀人才支持计划(NCET-05-0868) 航空基础基金(2007ZA53012) 863计划课题(2007AA04ZA04Z401)联合资助
关键词 灵敏度 模糊性 相关变量 矩方法 sensitivity analysis algorithms fuzzy analysis correlative normal variable moment method
  • 相关文献

参考文献5

  • 1Melchers R E,Ahammed M.A fast approximate method for parameter sensitivity estimation in Monte Carlo structural reliability[].Computers and Structures.2004 被引量:1
  • 2Yan-Gang Zhao,Tetsuro Ono.Moment methods for structural reliability[].Structural Safety.2001 被引量:1
  • 3SUES R H,CESARE M A.System Reliability and Sensitivity Factors Viathe MPPSS Method[].Probabilistic Engineering Mechanics.2005 被引量:1
  • 4Cruse TA,Huang Q,Mehta S,Mahadevan S.Systemreliability andriskassessment[].AIAA/ASME/ASCE/AHS/ASC Conference on StructuresStructural Dynamicsand Materials.1992 被引量:1
  • 5Wu Y-T,Monhanty S.Variable screening and ranking using sampling-based sensitivity measures[].Reliability Engineering and System Safety.2006 被引量:1

同被引文献22

  • 1张峰,吕震宙.串联结构模糊可靠性灵敏度分析的自适应重要抽样法[J].西北工业大学学报,2009,27(2):162-167. 被引量:2
  • 2Gargama H, Chaturvedi S K. Criticality assessment models for failure mode effects and criticality analysis using fuzzy logic[J]. IEEE Trans. on Reliability ,2010,60 (1) :102 - 110. 被引量:1
  • 3Ahammed M, Melehers R E. Gradient and parameter sensitivity esti- mation for systems evaluated using Monte Carlo analysis[J]. Relia- bility Engineering and System Safety, 2006,91 (5) : 594 - 601. 被引量:1
  • 4Chen L, Lti Z Z. A new numerical method for general failure proba- bility with fuzzy failure region [J]. Key Engineering Materials, 2007,102(3) :353 - 358. 被引量:1
  • 5Ni Z, Qiu Z P. Hybrid probabilistic fuzzy and non-probabilistic model of structural reliability[J]. Computers & Industrial Engi- neering ,2010,58(3) :463 - 467. 被引量:1
  • 6Dong Y G, Wang A N. A fuzzy reliability analysis based on the transformation between discrete fuzzy variables and discrete ran- dom variables[J]. International Journal of Reliability, Quality and Safety Engineering, 2006,10 (3) :25 - 35. 被引量:1
  • 7Fabio B, Franco B, Pier Giorgio M. Fuzzy reliability analysis of concrete structures[J]. Computers & Structures, 2004,82 (13) : 1033 - 1052. 被引量:1
  • 8Jiang Q M, Chen C H. A numerical algorithm of fuzzy reliability[J]. Reliability Engineering & System Safety, 2003,80 (3) : 299 - 307. 被引量:1
  • 9Sues R H, Cesare M A. System reliability and sensitivity factor via the MPPSS method [ J ]. Probabilistic Engineering Mechanics, 2005,20(2) :148 - 157. 被引量:1
  • 10Wu Y T, Sitakanta M. Variable screning and ranking using sampling-based sensitivity measures[J]. Reliability Engineer- ing and System Safety ,2006,91(6) :634 - 647. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部