期刊文献+

污泥焚烧NO_x排放特性预测的径向基网络模型

Predicting NOx Emission from Sludge Incineration Process Based on RBF Network Model
原文传递
导出
摘要 随着环保要求的不断提高,循环流化床的污泥焚烧以其较高的燃烧效率和较低的NOx排放而日益受到关注。文中在循环流化床污泥焚烧试验研究的基础上,建立了基于径向基网络的NOx排放特性预测神经网络模型,并对此模型进行校验。结果表明,在不同污泥成分和运行参数下,径向基网络较反向传播网络能更好地预测污泥焚烧排放特性。 With the ever strict regulation on environmental protection,more attention has been paid to the CFB sludge incineration because of its high combustion efficiency and low NOx emission.In this paper,one Radial Basis Function(RBF) neural network model is developed based on the experimental data of a CFB sludge incinerator.The prediction results show that under various conditions(such as sludge components,operating parameters,etc),RBF model can predict the emission characteristics more effectively than BP model,and it can provide a reasonable data base for the control of NOx emission during CFB sludge incineration process.
出处 《能源研究与利用》 2006年第3期10-13,共4页 Energy Research & Utilization
基金 江苏省科技厅和江苏省建设厅资助项目"城市污泥流化床焚烧及能量回收技术研究" 项目编号No.BS2001029和No.JS200106
关键词 径向基函数 神经网络 循环流化床 NOx 焚烧 预测 RBFN CFB NOx incineration prediction
  • 相关文献

参考文献6

  • 1赵庆祥.污泥处理的新途径燃料化[J].化工环保,1988,8(3):156-156. 被引量:3
  • 2[3]Werther J,Ogada T.Sewage Sludge Combustion[J].Process in Energy and Combustion Science,1999,(25):51-116. 被引量:1
  • 3姚刚.德国的污泥利用和处置(Ⅰ)[J].城市环境与城市生态,2000,13(1):43-47. 被引量:60
  • 4[5]Roman Neruda,Petra Kudov.Learning methods for radial basis function networks[J].Future Generation Computer System,2005,(21):1131-1142. 被引量:1
  • 5[6]Moody J,Darken C.Fast Learning in Networks of Locally-Tuned Processing Units[J].Neural Computation,1989,(1):281-294. 被引量:1
  • 6[7]Lothar Reh,Haiwen Ye.Neural networks for on-line prediction and optimization of circulating fluidized bed process steps[J].Powder Technology,2000,(111):123-131. 被引量:1

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部