期刊文献+

一种基于FP-tree挖掘最大频繁模式的改进算法 被引量:1

An improved algorithm for mining maximal frequent patterns based on FP-tree
下载PDF
导出
摘要 提出一种最大频繁模式挖掘的改进算法(FP-Imax),该算法引入一种与FP-tree类似的结构MFI-tree来存储所有的最大频繁项目集,并采用有效的子集检查方法进行优化,降低了算法的时空开销,提高了挖掘效率。实验表明,与FP-Max相比该算法的挖掘速度快两2—3倍。 In this paper,an improved algorithm(FP-Imax) for mining maximal frequent patterns is proposed,a novel data structure,MFI-tree,which is similar to FP-tree,is introduced to store all maximal frequent item sets and some subset-checking approaches are adopted to do improve it.Therefore the proposed algorithm greatly cuts down the cost of space and memory and improves the mining efficiency.Experiments show that FP-Imax is faster than FP-Max.
作者 王华金 兰红
出处 《长春工程学院学报(自然科学版)》 2007年第1期59-62,共4页 Journal of Changchun Institute of Technology:Natural Sciences Edition
基金 吉林省科技发展计划项目(20040539)
关键词 数据挖掘 FP-TREE 最大频繁模式 子集检查 data mining FP-tree maximal frequent pattern subset-checking
  • 相关文献

参考文献4

二级参考文献10

  • 1[1]Han J, Kambe M. Data Mining: Concepts and Techniques. Morgaan Kaufmann Publishers, San Francisco, CA, 2001 被引量:1
  • 2[2]Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules. Proc. 20th Int'l Conf. Very Large Databases, Santiago, Chile, 1994-09: 497-499 被引量:1
  • 3[3]Han J, Pei J, Yin Y. Mining Frequent Patterns Without Candidate Generation. In Proc. 2000 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'00), Dalas, TX, 2000-05: 1-12 被引量:1
  • 4[4]Pei J. Pattern Growth Methods for Frequent Pattern Mining [doctor thesis]. Simon Fraser University, 2002-06-13 被引量:1
  • 5[5]Burdick D, Calimlim M, Gehrke J. MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases. In Int'l Conf. on Data Engineering, 2001-04 被引量:1
  • 6[1]R Agrawal,T Imielinski, A Swami.Mining association rules between sets of items in large database[A]. Peter Buneman, Sushil Jajodia. Proceedings of SIGMID' 93 [ C ]. Washington, D· C: AC MPress, 1993:207-216. 被引量:1
  • 7[2]J Han, J Pei, Y Yin. Mining frequent patterns without candidate generation [ A ]. Anon. Proceedings of SIGMOD' 2000[ C ]. Dallas, Texas. USA: ACM Press, 2000:1- 12. 被引量:1
  • 8[3]D Burdick, M Calimlim, J Gehrke. A Maximal Frequent Itemset Algorithm for Transactional Database [ A ]. Anon. Proceedings of International Conference on Data Engineering 2001[ C ]. Heidelberg, Germany: IEEE Computer Society, 2001:443 -452. 被引量:1
  • 9[4]K Gouda, M J Zaki. Efficiently Mining Maximal Frequent Itemsets[ A ]. Nick Cercone, Tsau Young Lin, Xindong Wu.Proceedings of ICDM 2001 [ C ]. California, USA: IEEE Computer Society ,2001:163-170. 被引量:1
  • 10[5]Cormeet - 4 [ OL ]. http://www, almaden, ibm. com/cs/people/bayardo/resources, html. 被引量:1

共引文献20

同被引文献5

  • 1Mannila H,Toivonenand H,Verkamo A I.Discovery offrequent episodes in event sequences[J].Data Miningand Knowledge Discover,1997,1(3):259-289. 被引量:1
  • 2FU HG,NGUIFO EM.A Parallel A Igorithm to Gener-ate Formal Concepts for Large Data[A].Peter ERlund.Second International Conference on Formal Concept A-nalysis,ICFCA 2004[C].Sydney,Australia:Springer,2004,394-401. 被引量:1
  • 3Kam PS,Fu AWC.Diseovering temporal Pattems for in-terval-based events[A].Yahiko kambayashi,MukeshMohania,A Min Jjoa.In:Proceedings of the 2nd Interna-tional Conference on Data Warehousing and KnowledgeDiscovery(DawaK2000)[C].London,UK:Springer,2000:317-326. 被引量:1
  • 4贾澎涛,何华灿,刘丽,孙涛.时间序列数据挖掘综述[J].计算机应用研究,2007,24(11):15-18. 被引量:77
  • 5张宁.基于滑动窗口的时间序列离群数据挖掘[J].燕山大学学报,2008,32(6):483-486. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部