摘要
A sequential selective chemical degradation has been performed on the kerogen from the Nenjiang Formation of the southern Songliao Basin by using a series of mild chemical degradations (alkaline hydrolysis, cleavage of ether-bonds and sulfur-bonds, and ruthenium tetroxide (RuO4) oxidation). Subsequently, the GC-MS analyses are carried out on different degradation products. The results show that chemical degradations can release a great number of GC/MS-determinable biomarkers from insoluble kerogen, such as, alkaline hydrolysis products mainly comprise n-alkanes, fatty acids and alkanols; thiophene compounds are predominantly ether-bound to kerogen matrix; the products from the cleavage of sulfur-sulfur and sulfur-carbon bonds in the kerogen include fatty acids, alkanols and some n-alkanes with high carbon numbers; RuO4 oxidation products are predominantly monocarboxylic acids and α,ω-dicarboxylic acids. The distributions of main degradation products indicate that organic matter in this kerogen is predominantly derived from algae and bacteria, and that small amounts of high plant-derived organic matter are possibly combined into kerogen matrix at the late stage by sulfur bonds and other means. This study will provide an important approach for further discussing sources of organic matter in source rocks and their depositional paleoenvironments.
A sequential selective chemical degradation has been performed on the kerogen from the Nenjiang Formation of the southern Songliao Basin by using a series of mild chemical degradations (alkaline hydrolysis, cleavage of ether-bonds and sulfur-bonds, and ruthenium tetroxide (RuO_4) oxidation). Subsequently, the GC-MS analyses are carried out on different degradation products. The results show that chemical degradations can release a great number of GC/MS-determinable biomarkers from insoluble kerogen, such as, alkaline hydrolysis products mainly comprise n-alkanes, fatty acids and al-kanols; thiophene compounds are predominantly ether-bound to kerogen matrix; the products from the cleavage of sulfur-sulfur and sulfur-carbon bonds in the kerogen include fatty acids, alkanols and some n-alkanes with high carbon numbers; RuO_4 oxidation products are predominantly monocarboxylic acids and α,ω-dicarboxylic acids. The distributions of main degradation products indicate that organic matter in this kerogen is predominantly derived from algae and bacteria, and that small amounts of high plant-derived organic matter are possibly combined into kerogen matrix at the late stage by sulfur bonds and other means. This study will provide an important approach for further discussing sources of organic matter in source rocks and their depositional paleoenvironments.
基金
Frontier Research Program of Guangzhou Institute of Geochemis-try of Chinese Academy of Sciences (Grant No. GIGCX-04-08)
National Natural Science Foundation of China (Grant No. 40372070)