摘要
In this paper,the finite-difference time-domain(FDTD)algorithm is employed to simulate microwave pulse coupling into the rectangular cavity with aperture arrays.In the case in which the long-side of the slot in aperture arrays is perpendicular to the incident electrical field,and the electrical distribution of each center of slot in the aperture arrays in the process of microwave pulse coupling into the rectangular cavity with aperture arrays is analyzed in detail. We find that the effect of field enhancement of the slot in the middle of all the slots which distribute in the direction parallel to the incident electrical field is minimum and increases in turn from the middle to both sides symmetrically. We also find that the effect of field enhancement of the slot in the middle of all the slots which distribute in the direction perpendicular to the incident electrical field is maximum and decreases in turn from the middle to both sides symmetrically.In the same time,we investigate the factors that influence the effect of field enhancement of the center of each slot and the coupling electrical distribution in the cavity,including the number of slots and the spacing between slots.
利用时域有限差分(FDTD)方法对微波脉冲与孔阵矩形腔体的耦合过程进行了数值模拟研究.当孔缝阵中的孔缝长边垂直于入射电场方向时,详细分析了微波脉冲与孔缝阵矩形腔体的耦合过程中孔阵面上各个孔缝中心点的电场分布情况.结果表明,在平行于入射电场方向上排列的孔缝中,处在中心的孔缝场增强效应最弱,孔缝场增强效应由中心向两侧依次对称的增强;在垂直于入射电场方向上排列的孔缝中,处在中心的孔缝场增强效应最强,孔缝场增强效应由中心向两边依次对称的减弱.同时,讨论了孔缝孔阵中孔缝个数、间隔等因素对各孔缝中心点的场增强效应和腔体内的耦合场分布的影响.