摘要
The potassium-releasing characteristics of a bacterium from different minerals were studied through pure culture and soil column experiments. The results showed that the strain NBT of tested strains had the highest potassium-releasing capacity. It released 35.2 mg/L after 7days of pure culture incubation at 28@, 31.8% - 1203.7% more than other tested strains. Potassium released from the minerals was obviously affected by pH, aerobic condition, soil and mineral properties. The strain NBT had a much higher potential to release potassium in the pH 6.5-8.0 than other pHs. Living cell inoculation resulted in an increase of 84.8% -127.9% compared with that of the dead cell inoculation. More aerobic condition produced more K than a less aerobic one. The potassium-releasing order was as follows: illite>feldspar>muscovite. Soil column experiment showed that the bacterial number increased from (2.6 - 3.0) × 106/g to (6.8 - 7.4) × 107/g. Soil available potassium content increased by 31.2 - 33.6mg/kg in yellow-brown soil and 21.7mg/kg in paddy soil, when inoculated with the strain NBT, 290.6% and 185.5% increment of the dead cell inoculation soils respectively.
The potassium-releasing characteristics of a bacterium from different minerals were studied through pure culture and soil column experiments. The results showed that the strain NBT of tested strains had the highest potassium-releasing capacity. It released 35.2 mg/L after 7days of pure culture incubation at 28@, 31.8% - 1203.7% more than other tested strains. Potassium released from the minerals was obviously affected by pH, aerobic condition, soil and mineral properties. The strain NBT had a much higher potential to release potassium in the pH 6.5-8.0 than other pHs. Living cell inoculation resulted in an increase of 84.8% -127.9% compared with that of the dead cell inoculation. More aerobic condition produced more K than a less aerobic one. The potassium-releasing order was as follows: illite>feldspar>muscovite. Soil column experiment showed that the bacterial number increased from (2.6 - 3.0) × 106/g to (6.8 - 7.4) × 107/g. Soil available potassium content increased by 31.2 - 33.6mg/kg in yellow-brown soil and 21.7mg/kg in paddy soil, when inoculated with the strain NBT, 290.6% and 185.5% increment of the dead cell inoculation soils respectively.