摘要
The calculation of wing shielding effect starts from solving Ffowcs Williams and Hawkings equation without quadrupole source in time domain. The sound scattering of the wing and fuselage which are surrounded by a multi propeller sound field is modeled as a second sound source. A program is developed to calculate the acoustical effects of the rigid fuselage as well as wings with arbitrary shape in motion at low Mach number. As an example, the numerical calculation of the wing shielding of Y12 aircraft with an approximate shape is presented. The result manifests clearly the shielding effect of the wing on the fuselage and the approach is more efficient than that published before.
The calculation of wing shielding effect starts from solving Ffowcs Williams and Hawkings equation without quadrupole source in time domain. The sound scattering of the wing and fuselage which are surrounded by a multi propeller sound field is modeled as a second sound source. A program is developed to calculate the acoustical effects of the rigid fuselage as well as wings with arbitrary shape in motion at low Mach number. As an example, the numerical calculation of the wing shielding of Y12 aircraft with an approximate shape is presented. The result manifests clearly the shielding effect of the wing on the fuselage and the approach is more efficient than that published before.