期刊文献+

一种处理障碍约束的聚类算法 被引量:3

Clustering arithmetic with obstacle constraints
下载PDF
导出
摘要 根据障碍约束空间聚类问题的特点,利用图论的相关知识,提出了一种分阶段的基于图的聚类的算法。首先,通过最小生成树聚类算法,在不考虑障碍约束的情况下对空间对象进行聚类;然后,引入障碍物对上一步的聚类结果进行分割;最后,根据被障碍物分割后形成的各个类之间的障碍距离,将距离较近的两个类合并,形成最终的聚类结果。最后通过实验验证了算法的效果,而且输入参数少,时间复杂度低。 According to the characteristics of clustering with obstacle constraints,using the knowledge of graph theory,a multi-step Arithmetic was proposed.Firstly,it clustered the objects without obstacles by minimum spanning tree clustering method.Then it took obstacles to divide the generated clusters.Lastly it merged the clusters whose obstruct distance was little enough.The algorithm need only one parameter,it is of good performance and can find clusters with arbitrary shapes and varying densities.At last its ef...
出处 《计算机应用》 CSCD 北大核心 2009年第2期406-408,411,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(70771110)
关键词 聚类 障碍约束 最小生成树 障碍距离 clustering obstacle constraints minimum spanning tree obstruct distance
  • 相关文献

参考文献4

二级参考文献39

  • 1NG R, HAN J. Clarans: A method for clustering objects for spatial data mining[ J]. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(5): 1003 - 1016. 被引量:1
  • 2ZHANG T, RAMAKRISHNAN R, LIVNY M. Birch: An efficient clustering method for very large databases[A]. ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery[C]. Montreal, 1996. 103 - 114. 被引量:1
  • 3GUHA S, RASTOGI R, SHIM K. Cure: an efficient clustering algorithm for large databases[ A]. ACM SIGMOD International Conference on the Management of Data[ C]. Seattle, WA, USA,1998.73 - 84. 被引量:1
  • 4KAUFMAN L, ROUSSEEUW P. Finding Groups in Data: an Introduction to Cluster Analysis[ M]. John Wiley& Sons, 1990. 被引量:1
  • 5WANG W, YANG J, MUNTZ R. STING: A statistical information grid approach to spatial data mining[ A]. Proceedings of International Conference on Very Large Data Bases (VLDB'97) [ C]. Athens, Greece, 1997. 186 - 195. 被引量:1
  • 6BRESENHAM JE. Algorithm for computer control of a digital plotter[J]. IBM Systems Journal, 1965,4(1): 25-30. 被引量:1
  • 7MACQUEEN J. Some methods for classification and analysis of multivariate observations[ A]. 5th Berkeley symposium on mathematics,statistics and probability[ C], 1967, 1. 281 -296. 被引量:1
  • 8KAUFMAN L, ROUSSEEUW P. Finding groups in data: an introduction to cluster analysis[ M]. New York: John Wiley & Sons, 1990. 被引量:1
  • 9KARYPISG, HANE-H, KUMARV. Chameleon: ahierarchical clustering algorithm using dynamic modeling[ J]. Computer, 1999,32(1): 32 -68. 被引量:1
  • 10ESTER M, KRIEGEL H-P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[A]. Second International Conference on Knowledge Discovery and Data Mining [ C]. Portland: AAAI Press, 1996. 226 -231. 被引量:1

共引文献10

同被引文献28

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部