期刊文献+

基于内容的视频镜头的分类 被引量:1

Content-Based Video Shot Classifacation
原文传递
导出
摘要 论文在研究了视频关键帧选取和特征提取技术的基础上,提出了一种基于内容的视频镜头分类方法,并将其应用于动漫/真人的视频镜头的分类,以检验所提方法的性能。实验首先提取了视频的语义特征,接着使用互信息对特征的有效性进行分析,最后使用支持向量机作为分类器,对特征分析的结果进行验证。 In this paper, we have research about the methods of key frame and feature extraction of video shot, and proposed a method for the content-based video shot classification which we applied in video classification for cartoon and non-cartoon shot.In our experiment, feature extraction is the first step.Then MI is employed to analyze discriminative power of different features.Finally, SVM is employed as the classifier to validate the results for different feature combinations.
出处 《信息安全与通信保密》 2008年第11期75-76,80,共3页 Information Security and Communications Privacy
基金 国家自然科学基金项目(60772098 60772042) 国家863计划项目(2007AA01Z455) 教育部新世纪优秀人才支持计划项目(NCET-06-0393) 2007年上海市曙光计划项目。
关键词 视频分类 特征提取 互信息 video classification feature extraction mutual information(MI)
  • 相关文献

参考文献4

  • 1[1]Zhang H J,Wu J H,Zhong D,et al.An Integrated System for Content-based Video Retrieval and Browsing[J].Pattern Recognition,1997,30(4):643-657. 被引量:1
  • 2[2]Nagasaka A,Tanaka Y.Automatic Video Indexing and Fullvideo Search for Object Appearances[C].Second Working Conference on Visual Database Systems,IFIP WG2.6,1991:119-133. 被引量:1
  • 3[3]Manjunath S B,Ma Y W.Texture Features for Browsing and Retrieval of Image Data[J].On Pattern Analysis and Machine Intelligence,1996,18(8)837-842. 被引量:1
  • 4[4]Liew A W C,Wu Y,Yan H,et al.Effective Statistical Features for Coding and Non-coding DNA Sequence Classification for Yeast,C.elegans and Human[J].Bioinformatics Research and Application,2005,1(2):181-201. 被引量:1

同被引文献12

  • 1郑燕双,苏波,陈冬梅,李生红.基于高阶统计量的合成图像鉴别方法[J].信息安全与通信保密,2008,30(11):72-74. 被引量:3
  • 2DALAL N, TRIGGS B. Histograms of Oriented Gradients for Human Detection[J]. Computer Vision and Pattern Recognition, 2005(01):886-893. 被引量:1
  • 3FELZENSZWALB P F, HUTTENLOCHER D P. Pictorial Structures for Object Recognition[J]. International Journal of Computer Vision, 2005, 61(01):55-79. 被引量:1
  • 4CHEN Hsuan-Sheng, CHEN Hua-Tsung. Human Action Recognition Using Star Skeleton[C].USA:ACM, 2006: 171-178. 被引量:1
  • 5Sivic J, Russell B C, Efros A, et al. Discovering Objects and Their Location in Images[C]. USA: IEEE, 2005: 370-377. 被引量:1
  • 6Moshe Blank Lena Gorelick. Actions as Space-Time Shapes[C].USA:IEEE, 2005:1395-1402. 被引量:1
  • 7Piotr Dollar Vincent Rabaud. Behavior Recognition via Sparse Spatio-Temporal Features[C].USA:ACM, 2005:65-72. 被引量:1
  • 8Thomas Hofmann. Probabilistic Latent Semantic Indexing[C].USA:ACM, 1999:50-57. 被引量:1
  • 9Paul Scovanner, Saad Ali. A 3-Dimensional SIFT Descriptor and Its Application to Action Recognition[C]. USA:[s.n.],2010:357-360. 被引量:1
  • 10NIEBLES C. Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words[J]. International Journal of Computer, 2008,79(03): 299-318. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部