期刊文献+

Sensor Fault Diagnosis for a Class of Time Delay Uncertain Nonlinear Systems Using Neural Network 被引量:4

Sensor Fault Diagnosis for a Class of Time Delay Uncertain Nonlinear Systems Using Neural Network
下载PDF
导出
摘要 In this paper,a sliding mode observer scheme of sensor fault diagnosis is proposed for a class of time delay nonlinear systems with input uncertainty based on neural network.The sensor fault and the system input uncertainty are assumed to be unknown but bounded.The radial basis function (RBF) neural network is used to approximate the sensor fault.Based on the output of the RBF neural network,the sliding mode observer is presented.Using the Lyapunov method,a criterion for stability is given in terms of matrix inequality.Finally,an example is given for illustrating the availability of the fault diagnosis based on the proposed sliding mode observer. In this paper,a sliding mode observer scheme of sensor fault diagnosis is proposed for a class of time delay nonlinear systems with input uncertainty based on neural network.The sensor fault and the system input uncertainty are assumed to be unknown but bounded.The radial basis function (RBF) neural network is used to approximate the sensor fault.Based on the output of the RBF neural network,the sliding mode observer is presented.Using the Lyapunov method,a criterion for stability is given in terms of matrix inequality.Finally,an example is given for illustrating the availability of the fault diagnosis based on the proposed sliding mode observer.
出处 《International Journal of Automation and computing》 EI 2008年第4期401-405,共5页 国际自动化与计算杂志(英文版)
基金 Natural Science Foundation of Jiangsu Province (No.SBK20082815) Aeronautical Science Foundation of China (No.20075152014)
关键词 Uncertain nonlinear system time delay radial basis function (RBF) neural network sliding mode observer fault diag-nosis. Uncertain nonlinear system time delay radial basis function (RBF) neural network sliding mode observer fault diag-nosis.
  • 相关文献

参考文献20

  • 1[1]S.Simani,C.Fantuzzi,S.Beghelli.Diagnosis Techniques for Sensor Faults of Industrial Processes.IEEE Transac-tions on Control Systems Technology,vol.8,no.5,pp.848-855,2000. 被引量:1
  • 2[2]P.M.Frank.Fault Detection in Dynamic Systems Using Analytical and Knowledge-based Redundancy-A Survey and Some New Results.Automatics,vol.26,no.3,pp.459-474,1990. 被引量:1
  • 3[3]J.J.Gertler.Survey of Model-based Failure Detection and Isolation in Complex Plants.IEEE Control Systems Maga-zine,vol.8,no.6,pp.3-11,1998. 被引量:1
  • 4[4]S.S.Ge,H.Fan,T.H.Lee.Adaptive Neural Network Control of Nonlinear Systems with Unknown Time Delays.IEEE Transactions on Automatic Control,vol.48,no.11,pp.2004-2010,2003. 被引量:1
  • 5[5]F.H.Hsiao,J.D.Hwang.Stabilization of Nonlinear Sin-gularly Perturbed Multiple Time-delay Systems by Dither.Journal of Dynamic Systems,Measurement,and Control,vol.118,no.1,pp.176-181,1996. 被引量:1
  • 6[6]S.K.Nguang.Robust Stabilization of a Class of Time-delay Nonlinear Systems.IEEE Transactions on Automatic Con-trol,vol.45,no.4,pp.756-762,2000. 被引量:1
  • 7[7]J.H.Park.On the Design of Observer-based Controller of Linear Neutral Delay-differential Systems.Applied Mathe-matics and Computation,no.150,no.1,pp.195-202,2004. 被引量:1
  • 8[8]Z.Wang,B.Huang,H.Unbehauen.Robust H∞ Observer Design of Linear Time-delay Systems with Parametrie Un-certainty.Systems & Control Letters,vol.42,no.4,pp.303-312,2001. 被引量:1
  • 9[9]S.Raghavan,J.K.Hedriek.Observer Design for a Class of Nonlinear Systems.International Journal of Control,vol.59,no.2,pp.515-528,1994. 被引量:1
  • 10[10]Y.Xiong,M.Saif.Sliding Mode Observer for Nonlinear Un-certain Systems.IEEE Transactions on Automatic Control,vol.46,no.12,pp.2012-2017,2001. 被引量:1

同被引文献28

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部