摘要
The frictional properties of micro bearings have strong influence on the performance of the whole system because of tiny scale of micro-electromechanical system (MEMS). To develop micro bearings with low friction,it is important to evaluate the friction behaviors on the micro bearing. The testing system and the principle to evaluate the tribological performance of micromachining work-pieces under the load of mill Newton scale is introduced in paper "A new approach to measure the friction coefficient of micro journal bearings" of Yao et al,. But as the tribological force is faint in micro scale, the measured force is influenced a lot by the testing error. As the equation of that of Yao’s paper is very sensitive to the measured force, the tested result is influenced remarkably by testing error. So it is hard to get precision result. To solve this problem, the test system with new compensation method is introduced to precisely evaluate tribological performance under mill scale. The new metrology method is developed by means of the error compensation from two sets of testing data. The data are the force collected respectively when the friction counterparts rotate in CW(clockwise) and CCW(counter-clockwise) direction. So we deduce the equation of friction coefficient respctively on the condition of journal running in CCW and CW direction. As condition of measuring those two friciton coefficients are alike except the running direction of journal, and then the friction coefficient should be the same because this difference of direction has no influence on the fricition coefficients. Considering this, we unite the both equation, make the data measured in different subtract each other in the equation, and then a new equation can be gotten. This new equation enhances the metrology precision of friction coefficient theoretically thanks to the counteracting of error values in the equation. Using this method we testing the friction of high speed steel journal with hard alloy bearing. The result shows the new compensation me
The frictional properties of micro bearings have strong influence on the performance of the whole system because of tiny scale of micro-electromechanical system (MEMS). To develop micro bearings with low friction,it is important to evaluate the friction behaviors on the micro bearing. The testing system and the principle to evaluate the tribological performance of micromachining work-pieces under the load of mill Newton scale is introduced in paper "A new approach to measure the friction coefficient of mi...
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2002年第S1期25-,共1页
Journal of Xiamen University:Natural Science
基金
ProjectsupportedbyNationalScienceFoundationofChina (5 970 5 0 0 7)
Science TechnologyCommitteeofShanghaiMunicipalGovernment (97QF1 4 0 0 8)