期刊文献+

Face Recognition Using Kernel Discriminant Analysis 被引量:1

Face Recognition Using Kernel Discriminant Analysis
下载PDF
导出
摘要 Linear discrimiant analysis (LDA) has been used in face recognition. But it is difficult to handle the high nonlinear problems, such as changes of large viewpoint and illumination. In order to overcome these problems, kernel discriminant analysis for face recognition is presented. This approach adopts the kernel functions to replace the dot products of nonlinear mapping in the high dimensional feature space, and then the nonlinear problem can be solved in the input space conveniently without explicit mapping. Two face databases are given. Linear Discrimiant Analysis (LDA) has demonstrated their success in face recognition. But LDA is difficult to handle the high nonlinear problems, such as changes of large viewpoint and illumination in face recognition. In order to overcome these problems, we investigate Kernel Discriminant Analysis (KDA) for face recognition. This approach adopts the kernel functions to replace the dot products of nonlinear mapping in the high dimensional feature space, and then the nonlinear problem can be solved in the input space conveniently without explicit mapping. Two face databases are used to test KDA approach. The results show that our approach outperforms the conventional PCA(Eigenface) and LDA(Fisherface) approaches.
出处 《High Technology Letters》 EI CAS 2002年第4期43-46,共4页 高技术通讯(英文版)
  • 相关文献

参考文献10

  • 1[1]Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces: a survey. In: Proceedings of the IEEE, 1995,83(5):705 被引量:1
  • 2[2]Belhumeur P N, Hespanha J P,Kriegman D J. IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19:711 被引量:1
  • 3[3]Adini Y,Moses Y,Ullman S.IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19:721 被引量:1
  • 4[4]Baudat G, Anouar F. Neural Computation, 2000,12:2385 被引量:1
  • 5[5]Muller K R, Mika S, Ratsch G, et al. IEEE Trans.on Neural Networks, 2001,12:181 被引量:1
  • 6[6]Guo G, Li S Z, Chan K. Face recognition by support vector machines. In: Proceedings of Fourth IEEE International Conference on Automatic Face and Gesture Recognition, 2000.196 被引量:1
  • 7[7]Yang M H, Ahuja N, Kriegman D. Face recognition using kernel eigenfaces. In: Proceedings of International Conference on Image Processing, 2000,(1):37~40 被引量:1
  • 8[8]Li Y, Gong S,Liddell H. Constructing Structures of Facial Identities on the View Sphere Using Kernel Discriminant Analysis.In:Technical report, Queen Mary, University of London, 2001 被引量:1
  • 9[9]Wu Y, Huang T S, Toyama K. Self-supervised learning for object recognition based on kernel discriminant-EM Algorithm. In: Proceedings of International Conference on Computer Vision, 2001,1:275~280 被引量:1
  • 10[10]Pan Z, Rust A G, Bolouri H. Image redundancy reduction for neural network classification using discrete cosine transforms. In: Proceeding of International Joint Conference on Neural Networks, 2000,(3):149~154 被引量:1

同被引文献22

  • 1STEVEN B, JOHNSTON C, PETRYSHEN P. Premature infant pain profile: Development and initial validation [ J]. Clinical Journal of Pain, 1996,12 ( 1 ) :13 -22. 被引量:1
  • 2LAWRENCE J, ALCOCK D, MCGRATH P. The development of a tool to assess neonatal pain [ J ]. Neonatal Network, 1993,12 (6) :59 --66. 被引量:1
  • 3MCNAIR C, BALLANTYNE M, DIONNE K. Postoperative pain assessment in the neonatal intensive care unit[J]. Arch Dis Child Fetal Neonatal Ed,2004,89(6) :537 -541. 被引量:1
  • 4GRUNAU R E, OBERLANDER T, HOLSTI L. Bedside application of the neonatal facial coding system in pain assessment of premature neonates[J]. Pain,1998,76 (3) :277 -286. 被引量:1
  • 5LINK H, LAM K M, SIU W C. A New Approach Using Modified Hausdorff Distance with Eigenface for Human Face Recognition C CI//The Seventh International Conference on Control, Automation, Bobotics and Vision. Singapore,2002:980 - 984. 被引量:1
  • 6TURK M A, PENTLAND A. Eigenfaces for Recognition [ J ]. Journal of Cogntitive Neuroscience, 1991,3 ( 1 ) :71 - 86. 被引量:1
  • 7YANG Jian, YANG Jingyu. Generalized K-L Transform Based Combined Feature Extraction [ J ]. Pattern Recognition,2002,35 (1) :295 -297. 被引量:1
  • 8MARTINEZ A M,KAK A C. PCA versus LDA[J]. IEEE Trans on PAMI,2001,23 (2) :228 - 233. 被引量:1
  • 9WILLKS S S. Mathematical Statistics[M ]. New York :Wiley Press, 1962:577 - 578. 被引量:1
  • 10DUDA R, HART P. Pattern Classification and Scene Analysis [ M ]. New York: Wiley Press, 1973. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部