期刊文献+

贝塞尔-高斯光束经球差透镜的聚焦特性

Focus of Bessel-Gaussian beams through a lens with spherical aberration
下载PDF
导出
摘要 利用广义惠更斯-菲涅耳衍射积分推导了一种涡漩光束——贝塞尔-高斯光束经球差透镜聚焦后的光场表达式,并利用数值计算分析了球差系数对聚焦光束光强剖面分布的影响。研究表明,通过改变球差系数,可以改变零阶贝塞尔-高斯光束轴上光强最大值点的位置,球差的存在使轴上光强最大值减小。零阶贝塞尔-高斯光束经球差透镜聚焦后不能保持其传输不变性,在几何焦面上光强剖面类似于高斯形分布,而实际焦点所在面上的分布则仍具有零阶贝塞尔函数的特征。对于一阶贝塞尔—高斯光束,球差的存在会改变其横向光强分布。 Based on generalized Huygens-Fresnel diffraction integral,the expressions of field distribution of a class of vortex beams-Bessel-Gaussian beams focused by a lens with spherical aberration are derived.The influence of the spherical aberration coefficient on intensity profile is analyzed by numerical calculations.The results show that the position of maximum axial intensity of zero-order Bessel-Gaussian beams could be controlled by changing spherical aberration coefficient,and the corresponding maximum axial...
出处 《激光杂志》 CAS CSCD 北大核心 2008年第4期34-35,共2页 Laser Journal
关键词 广义惠更斯-菲涅耳衍射 涡漩光束:贝塞尔-高斯光束 球差 generalized Huygens-Fresnel diffraction integral vortex beams Bessel-Gaussian beams spherical aberration
  • 相关文献

参考文献14

  • 1[1]Tamm C.Frequency locking of two transverse optical modes of a laser[J].Phys.Rev.A,1988,38:5960-5963. 被引量:1
  • 2[2]Abramochkin E,Volostnikov V.Beam transformations and nontrans-formed beams[J].Opt.Commun.,1991,83(1):123-135. 被引量:1
  • 3[3]Hasegawa T,Shimizu T.Frequency-doubled Hermite-Gaussian beam and the mode conversion to the Laguerre-Ganssian beam[J].Opt.Commun.,1999,160(1):103-108. 被引量:1
  • 4[4]He H,Heckenberg NR,Rubinsztein-Dunlop H.Optical particle trap-ping with higher-order doughnut beams produced using high efficiency computer generated holograms[J].J.Med.Opt.,1995,42(1):217-223. 被引量:1
  • 5[5]Gahagan K.T.,Swartzlander G.A.Simultaneous trapping of low-in-dex and high-index mieropartieles observed with an optical-vortex trap[J].J,opt.Soc.Am.B,1999,16(4):533-537. 被引量:1
  • 6[6]Furhapter S,Jesacher A,Be.met S,et al.Spiral interferometry[J].opt.Lett.,2005,30(15):1953-1955. 被引量:1
  • 7[7]Gahagan KT,Swartzlander GA.optical vortex trapping of particles[J].Opt.Lett.,1996,21(11):827-829. 被引量:1
  • 8[8]Wada A,Ohminato H,Yonemura T,et al.Effect of comatic aberra-tion on the propagation characteristics of Laguerre Ganssian beams[J].Opt.Rev.,2005,12(6):451-455. 被引量:1
  • 9[9]Rakesh Kumar Singh,P.Senthilkumaran,Kehar Singh.Focusing of a-vortex carrying beam with Gaussian background by a lens in the pres-ence of spherical aberration and defocusing[J].Optics and Lasers in Engineering,2007,45(7):773-782. 被引量:1
  • 10[10]Rakesh Kumar Singh,P.Senthilkumaran.Kehar Singh.Influence of astigmatism and defocusing on the focusing of a singular beam[J].Opt.Commun,2007,270(2):128-138. 被引量:1

二级参考文献11

  • 1黄文龙,吕百达,叶一东,刘忠永.有限束宽聚焦贝塞尔-高斯光束轴上的光强分布[J].中国激光,1995,22(4):285-292. 被引量:3
  • 2Gori F, Guattari G. Bessel-Gauss beams[J]. Opt Commun, 1987, 64:491-495. 被引量:1
  • 3Collins S A. Lens-system diffraction integral written in terms of matrix optics[J]. J Opt Soc Am, 1970, 60:1168-1177. 被引量:1
  • 4Li Y, Wolf E. Focal shift in focused truncated Gaussian beam[J]. Opt Commun, 1982, 42(3) :151-156. 被引量:1
  • 5Borghi R, .Santarsiero M, Vicalvi S. Focal shift of focused flat-topped beams[J]. Opt Commun, 1998, 154:243-248. 被引量:1
  • 6Martinez M, Climent V. Focal switch: a new effect in low-Fresnel-number systems[J]. Appl Opt, 1996, 35:24-27. 被引量:1
  • 7Li Y. Focal shift and focal switch in dual focus systems[J]. J Opt Soc Am A, 1997, 14:1297-1304. 被引量:1
  • 8Lü B D, Peng R W. Focal shift and focal switching in systems with the aperture and lens separated[J]. J Opt A : Pure Appl Opt, 2002, 4:601-605. 被引量:1
  • 9Ji X L, Lü B D. Focal shift and focal switch of flattened Gaussian beams in passage through an aperture bifocal lens[J]. IEEE J Quant Electron, 2003, 39:172-178. 被引量:1
  • 10季小玲,吕百达,等.高斯光束通过双焦透镜的聚焦特性[J].强激光与粒子束,2001,13(6):679-682. 被引量:4

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部