期刊文献+

最大跳跃数M(19,10)

The Maximal Jump Number M(19,10)
下载PDF
导出
摘要 如果n及k(n≥k)是两个较大的正整数,那么要计算出最大跳跃数M(n,k)的值非常困难,Brualdi与Jung曾给出了当1≤k≤n≤10时M(n,k)的值,对于k=10,n=19,证明了M(19,10)=33,这证实了Brualdi与Jung的关于最大跳跃数M(2k+1,k+1)的值的猜想在k=9时成立,但是他们的另一个猜想M(n,k)<M(n+l_1,k+l_2)对l_1=1与l_2=1不成立。 If n and k(n≥k) are two large positive integers, then it is quite difficult to give the value of the maximal jump number M( n , k ). Brualdi and Jung gave a table about the values of M( n ,k ) for 1≤k≤n≤10. For k = 10, n = 19, we prove M(19, 10) = 33,which verifies that one of their conjecture about the value M(2k +1 ,k + 1) holds for k = 9 and that their another conjecture M ( n , k ) < M( n + l1 , k + l2) does not hold for l1 = 1 and l2 = 1.
作者 游林 王天明
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2003年第z1期28-37,共10页 Journal of Beijing University of Posts and Telecommunications
基金 海南省自然科学基金(10002)
关键词 (0 1)-矩阵 最大跳跃数 猜想 (0,1 )-matrix maximal jump number conjecture
  • 相关文献

参考文献5

  • 1[1]Brualdi R A,Jung H C. Maximum and minmum jump number of posets from matrices[J].Linear Algebra Appl,1992,172: 261-282. 被引量:1
  • 2[2]Chen M,Habib M.The jump number of dags and posets:An introduction[J].Ann Discrete Math,1980,9: 189-194. 被引量:1
  • 3[3]Brualdi R A,Ryser H J. Combinatorial matrix theory[M].Cambridge:Cambridge University Press,1991. 被引量:1
  • 4[4]Cheng B,Liu B. Matrices of zeros and ones with the maximum jump number[J]. Linear Algebra Appl,1998,277: 83-95. 被引量:1
  • 5[5]Hou Y P.Maximum jump number of (0,1)-matrices with constant line sum[J]. Journal of Beijing Normal University(Nature Science),1998,34(1): 35-37. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部