摘要
In order to reduce high calibration pressure in hydroforming of components with too small radii, a method wasproposed to manufacture automotive hollow components with rectangular shape by relatively lower pressure. Theprocess is simulated and analyzed. It is thought that the friction force between the die surface and tube is a mainreason that high pressure is needed to form small radii. Using the method proposed in this paper, a petal-like sectionshape is first preformed so that the central zones of the four sides of the preform section do not contact with the diesides, thus the tube metal is easy to flow into the transition radii area in calibration stage. Moreover, a positive forcealong the sides is produced by the internal pressure, which is beneficial to overcome the friction force and push thematerial into the radii. Therefore, the pressure for forming the transition radii is greatly reduced and the componentswith small radii can be formed with relatively lower pressure. For the experimental case conducted in this paper, theforming pressure is reduced by about 28.6% than the estimated forming pressure.