摘要
用δ函数把均匀带电圆环表象成为过圆环所在坐标面上的电荷面密度,并结合推广了的静电场边值关系分区求解了介质球与带电圆环静电问题.
By means of δ function,uniform charged ring is expressed into surface charge density function on coordinate surfaces.The expression is used in electrostatic problem of uniform charged ring and spherical medium.
出处
《西南民族大学学报(自然科学版)》
CAS
2006年第4期794-798,共5页
Journal of Southwest Minzu University(Natural Science Edition)
关键词
带电圆环
介质球
电势
边值关系
勒让得函数
uniform charged ring
spherical medium
electric potential
boundary relation
Legendre function