期刊文献+

斜切基片上台阶流动生长的YBCO薄膜及BST/YBCO双层薄膜

Step-Flow-Growth YBCO Films and BST/YBCO Bilayer Films on Vicinal Substrates
下载PDF
导出
摘要 用脉冲激光沉积法在斜切(001)SrTiO3单晶基片上生长了c轴取向的YBa2Cu3O7-δ超导薄膜,在斜切(001)LaAlO3单晶基片上生长了Ba0.1Sr0.9TiO3/YBa2Cu3O7-δ双层薄膜,并用扫描电镜和透射电镜对薄膜组织进行了表征.结果表明,在1°~3°斜切的SrTiO3基片上生长的YBa2Cu3O7-δ薄膜,呈现台阶流动(step flow)到三维岛状生长的转变;而6°~15°斜切基片上生长的YBa2Cu3O7-δ薄膜为完全台阶流动生长.在1.2°斜切的LaAlO3基片上原位制备了良好异质外延生长的Ba0.1Sr0.9TiO3/YBa2Cu3O7-δ双层薄膜.在77 K,1 MHz频率和±30 V直流偏压下,测定了其电容-电压特性,确定其介电常数、可调谐性和品质因数分别为1200,60%和133.表明该Ba0.1Sr0.9TiO3薄膜可应用于在液氮温度下工作的可调谐微波器件. c-axis orientated YBa2Cu3O7-delta film and Ba0.1Sr0.9TiO3/YBa2Cu3O7-delta heterostructure films have been fabricated by pulsed laser deposition on miscut (001) SrTiO3 and (001) LaAlO3 substrates, respectively. Microstructures of the films have been characterized by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results show that the YBa2Cu3O7-delta films grown on 1 degrees similar to 3 degrees miscut substrates display a step-flow crossover to three-dimensional island growths, and on 6 degrees similar to 15 degrees miscut substrates display a complete step flow growth. Perfect heteroepitaxial growth of Ba0.1Sr0.9TiO3/YBa2Cu3O7-delta on 1.2 degrees miscut (001) LaAlO3 has been in-situ achieved. A parallel-plate capacitor configuration is used to measure the capacitance-voltage properties of the Ba0.1Sr0.9TiO3 thin films under a dc bias of +/- 30 V and 1 MHz frequency at 77 K, and the dielectric constant, tenability and figure of merit are found to be 1200, 60%, and 133, respectively, confirming their usefulness for electrically tunable microwave devices at liquid nitrogen temperature.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第4期542-545,共4页 Rare Metal Materials and Engineering
基金 国家自然科学基金重点基金资助(59832050)
关键词 YBa2Cu3O7-δ超导薄膜 Ba0.1Sr0.9TiO3/YBa2Cu3O7-δ异质结构 外延生长 脉冲激光沉积 YBa2Cu3O7-delta superconducting film Ba0.1Sr0.9TiO3/YBa2Cu3O7-delta heterostructure epitaxial growth pulsed laser deposition
  • 相关文献

参考文献12

  • 1[1]Chen C L,Feng H H,Zhang Z et al.Appl Phys Lett[J],1999,75:412 被引量:1
  • 2[2]Jia Q X,Findikoglu A T,Reagor D et al.Appl Phys Lett[J],1998,73:897 被引量:1
  • 3[3]Ramesh R,Inam A,Chan W K et al.Science[J],1991,252:944 被引量:1
  • 4[4]Hu W,Li L,Wang T et al.Chin Phys Lett[J],1999,16:853 被引量:1
  • 5[5]Kawasaki M,Takashashi K,Maeda T et al.Science[J],1994,266:1540 被引量:1
  • 6[6]Haage T,Habermeier H U,Zegenhagen J.Sur Sci[J],1997,370:158 被引量:1
  • 7[7]Nie J,Shoji A,Koyanagi M etal.Japan J ApplPhys[J],1998,37:1014 被引量:1
  • 8[8]Zegenhagen J,Haage T,Jiang Q D.Appl Phys A[J],1998,67:711 被引量:1
  • 9[9]Mechin I,Berghuis P,Evetts J E.Physica C[J],1998,302:102 被引量:1
  • 10[10]Brotz J,Fuess H,Haage T et al.Phys Rev B[J],1998,57:3679 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部