期刊文献+

蚁群算法在QoS组播路由问题中的应用 被引量:3

Implementation of Ant Colony Algorithm in QoS Multicast Routing Problem
下载PDF
导出
摘要 研究了该算法在QoS组播路由问题中的应用,描述了QoS路由优化问题。基于多个不相关可加度量的QoS路由问题是NP完全问题,目前采用的方法多为启发式算法。由于蚁群算法是一种基于蚁群系统原理的、具有自组织能力的、新型的启发式优化算法,利用其能够寻找最短路径这一特性,提出了一种基于蚁群系统原理,用于解决时延和时延抖动约束问题的组播路由问题的QoS组播路由算法。该算法改进了路径选择策略,优化了信息素更新公式。仿真结果表明,该算法能够迅速、准确地找到最优解。 Most of the algorithms applied to the QoS multicast routing problem are heuristic algorithms.Ant colony algorithm is a self-organized,novel heuristic algorithm based on ant colony system principle.Utilizing its capability of searching the shortest route,proposed a QoS multicast routing algorithm based on ant colony system to solve the delay and delay variation constrained multicast routing problem.A route selecting method is improved and the information update formula is optimized.The simulation proves that...
作者 尹莹莹 孙亮
出处 《控制工程》 CSCD 2006年第S1期170-172,211,共4页 Control Engineering of China
关键词 QOS组播路由 蚁群算法 时延 时延抖动 QoS multicast routing ant colony algorithm delay delay variation
  • 相关文献

参考文献2

二级参考文献14

  • 1Chen Luonan,IEEE Trans Circuits and Systems for Video Technology,1999年,46卷,8期,974页 被引量:1
  • 2Cavendish D,Proc Internet Mini Conference with Globcom 98,1998年 被引量:1
  • 3Tan Y,Proc IEEE Workshop on Neural Networks for Signal Processing,1997年,541页 被引量:1
  • 4Gambardella LM, Dorigo M. Ant-Q: A reinforcement learning approach to the traveling salesman problem[A]. Proceedings of ML-95, Twelfth International Conference on Machining[C]. Morgan Kaufmann, 1995.252-260. 被引量:1
  • 5Dorigo M, Maniezzo V, Colorni A. The Ant System: Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybermetrics , 1996,26(1):1-13. 被引量:1
  • 6Dorigo M, Gambardella LM. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66. 被引量:1
  • 7Dorigo M, Caro GD. Ant Algorithms for Discrete Optimization[J]. Artificial Life, 1999,5(3), 137-172. 被引量:1
  • 8Stutzle T, Hoos HH. MAX-MIN ant system[J]. Future Generation Computer System , 2000,16(8) : 889-914. 被引量:1
  • 9White T, Pagurek B, Oppacher F. ASGA: Improving the Ant System by Integration with Genetic Algorithms[A]. Proceedings of the 3rd Conference on Genertic Programming (GP/SGA98)[C], 1998. 610-617. 被引量:1
  • 10孙文生,刘泽民.组播路由调度的神经网络方法[J].通信学报,1998,19(11):1-6. 被引量:22

共引文献11

同被引文献22

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部