期刊文献+

基于聚类的肿瘤亚型发现模型 被引量:1

Tumor Sub-types Discovery Model Based on Hierarchical Clustering Algorithm
下载PDF
导出
摘要 针对目前基于基因表达谱的样本分型问题尚未很好解决的现状,提出了一种基于层次聚类的肿瘤亚型发现模型。首先,采用定义的信息系数进行信息基因的筛选;然后将层次聚类与t检验相结合,在每一个阈值下得出推定的亚型分型方案;最后,计算一致性样本分型方案,比较每一个推定的样本分型方案与一致性样本分型方案之间的差异,得出最佳分型结果,完成肿瘤的亚型发现。将该模型应用于三个公开发表的数据集,均能得到很好的分型结果,表明了该模型的有效性和可行性。 Tumor sub-types discovery model based on hierarchical clustering algorithm is given by using the gene expression profiles.The info-genes are selected by using defined information coefficient.The putative tumor sub-types discovery is derived by using hierarchical clustering combimed with t-test.The consensus sample sub-types are constructed from the putative sample sub-types and the best sample sub-types that have the minimum distance between the consensus sub-types and the putative sub-types are identified.This process is applied to three data sets as test cases.The experiment results show the effectiveness and feasibility of the method.
出处 《控制工程》 CSCD 2007年第2期122-124,153,共4页 Control Engineering of China
基金 国家自然科学基金资助项目(60234020)
关键词 亚型 基因表达谱 聚类 sub-type gene expression profiles cluster
  • 相关文献

参考文献7

  • 1[1]Golub T R.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537. 被引量:1
  • 2[2]Perou C M.Distinctive gene expression patterns in human mammary epithelial cells and breast cancers[J].Proc Natl Acad Sci USA,1999,96(16):9212-9217. 被引量:1
  • 3[3]Welsh J B.Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer[J].Proc Natl Acad Sci USA,2001,98(3):1176-1181. 被引量:1
  • 4[4]Xing E P.CLIFF:clustering of high-dimensional micro-array data viaiterative feature filtering using normalized cuts[J].Bioinformatics,2001,17(S):306-315. 被引量:1
  • 5[6]Alon U.Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays[J].Proc Natl Acad Sci USA,1999,96(12):6745-6750. 被引量:1
  • 6[7]Li W J.SamCluster:an integrated scheme for automatic discovery of sample classes using gene expression profile[J].Bioinformatic,2003,19(7):811-817. 被引量:1
  • 7[8]Lukashin A V.Analysis of temporal gene expression profiles:clustering by simulated annealing and determining the optimal number of clusters[J].Bioinformatics,2001,17(5):405-414. 被引量:1

同被引文献5

  • 1Te Ming-huang,Kecman V.Gene extraction for cancer diagnosis by support vector machines-an improvement[J].Artical Intelligence in Medicine, 2005,35 : 185-194. 被引量:1
  • 2Alon U.Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays[C]//Proc Natl Acad Sci, USA, 1999,96(12) : 6745-6750. 被引量:1
  • 3Mitra P,Majumder D D.Feature selection and gene clustering from gene expression data[C]//Proccedings of the 17th International Conference on Pattern on Recognition,2004: 1051-4651. 被引量:1
  • 4Mitra P,Murthy C A,Pal S K.Unsupervised feature selection using feature similarity[J].IEEE Trans Pattern Analysis and Machine Intelligence, 2002,24( 3 ) : 301-312. 被引量:1
  • 5Golub T R,Slonim D K,Tamayo P,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science, 1999,286( 15 ) : 531-537. 被引量:1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部