期刊文献+

一类非线性发展方程组的定解问题

Qualitative Solution Problems of a Class of Nonlinear Evolution Equations
原文传递
导出
摘要 将不可压缩的广义neo-Hookean材料组成的超弹性圆柱壳径向对称运动的数学模型归结为一类非线性发展方程组的初边值问题.利用材料的不可压缩条件和边界条件求得了描述圆柱壳内表面径向运动的二阶非线性常微分方程.给出了微分方程的周期解(即圆柱壳的内表面产生非线性周期振动)的存在条件,讨论了材料参数和结构参数对方程的周期解的影响,并给出了相应的数值模拟. The radial symmetric motion of a hyper-elastic cylindrical shell composed of the incompressible generalized neo-Hookean material was described as an initial and boundary value problem of a class of nonlinear evolution equations.A second-order nonlinear ordinary differential equation that describes the motion about the radial direction of the inner-surface of the shell was obtained by using the incompressibility constraint and boundary conditions.Existence conditions of periodic solution of the differential equation(i.e,the inner-surface of cylindrical shell producing nonlinear periodic oscillation) are presented.The effects of material and structure parameters on the periodic solution of the equation are discussed,and the corresponding numerical simulations are also carried out.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第8期132-138,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(10626045) 烟台大学博士基金(SX04B24)
关键词 不可压缩的超弹性圆柱壳 非线性发展方程组 周期解 非线性周期振动 Incompressible hyper-elastic cylindrical shell nonlinear evolution equations periodic solution nonlinear periodic oscillation
  • 相关文献

参考文献3

二级参考文献18

  • 1任九生,程昌钧.CAVITATED BIFURCATION FOR INCOMPRESSIBLE HYPERELASTIC MATERIAL[J].Applied Mathematics and Mechanics(English Edition),2002,23(8):881-888. 被引量:3
  • 2Ren Jiusheng, Cheng Changjun.CAVITATED BIFURCATION FOR COMPOSED COMPRESSIBLE HYPER-ELASTIC MATERIALS[J].Acta Mechanica Solida Sinica,2002,15(3):208-213. 被引量:16
  • 3尚新春,程昌钧.超弹性材料中的球形空穴分叉[J].力学学报,1996,28(6):751-755. 被引量:21
  • 4Ball J M. Discontinuous equilibrium solutions and cavitations in nonlinear elasticity[ J]. Philos Trans Roy Soc Lond SerA, 1982,306(3) :557-610. 被引量:1
  • 5Chou-Wang M -S, Horgan C O. Void nucleation and growth for a class of incompressible nonlinear elastic materials[ J ] . International Journal of Solids and Structures, 1989,25( 11 ): 1239-1254. 被引量:1
  • 6Polignone D A, Horgan C O. Cavitation for incompressible nonlinearly elastic spheres[ J ]. Journal of Elasticity, 1993,33( 1 ) :27-65. 被引量:1
  • 7Chung, D- T, Horgan C O, Abeyaratne R. A note on a bifurcation problem in finite plasticity related to void nucleation[ J ] . International Journal of Solids and Structures, 1987,23 (8): 983-988. 被引量:1
  • 8Horgan C O, Polignone D A. Cavitation in nonlinear elastic solids: A review[J].Applied Mechanics Review, 1995,48(8) :471-485. 被引量:1
  • 9SHANG Xin-chun, CHENG Chang-jun. Exact Solution for cavitated bifurcation for compressible hyperelastic materials[J]. International Journal of Engineering Science ,2001,39( 11 ): 1101-1117. 被引量:1
  • 10HOU Hang-sheng. A study of combined asymmetric and cavitated bifurcation in neo-Hookey material under symmetric dead loading[ J]. Journal of Applied Mechanics, 1993,60(1) :1-7. 被引量:1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部