期刊文献+

硅晶片的液流悬浮超光滑加工机理与实验 被引量:11

Theory and experiment on hydrodynamic suspension ultra-smooth machining for silicon wafers
下载PDF
导出
摘要 建立了基于机器人的液流悬浮超光滑加工系统。配置出了适用的悬浮加工液,通过对硅晶片的大量加工实验研究,得到了加工时间、工具转速和粒子浓度对工件表面质量的影响规律。实验结果表明:当加工时间在60 min、工具转速为6 000 r/min上下、粒子浓度为30 g/L左右时,加工效果最佳。加工后的硅晶片表面粗糙度Ra能达到1.55 nm。深入分析了液流悬浮超光滑加工的去除机理,硅晶片的液流悬浮超光滑加工是机械冲击作用和化学作用的综合结果,加工液中的磨料颗粒有对工件表面的机械冲击作用和对化学反应的催化作用。理论分析和实验结果表明,通过采用液流悬浮加工新技术,可以实现对半导体材料硅晶片的纳米水平的超光滑加工,获得表面无塑性变形和晶格缺陷的纳米精度表面。 In order to realize nano-scale ultra-smooth machining for silicon wafers, a hydrodynamic suspension machining system based on robot was established, and the nanometer SiO2 suspension liquid with good dispersibility and stability was developed. By conducting experiments, the correlation between the surface roughness of workpiece and the machining time, motor rotate speed, density of abrasive particles were revealed. Experimental results indicate that the machining effects are the best when the machining time, motor rotate speed and density of abrasive particle are 60 min/s, 6000 r/min and 30 g/L, respectively. The surface roughness after machining can be 1.55 nm. Based on the conducting experiments, the machining mechanism was analyzed. The results show that the hydrodynamic suspension ultra-smooth machining for silicon wafers is the combination of mechanical impacting and chemical function. The nano-scale ultra-smooth surface of silicon wafers can be realized after hydrodynamic suspension machining and high quality surfaces without plastic deformation and damage are achieved.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2007年第7期1084-1089,共6页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.50175049)
关键词 超光滑加工 液流悬浮 硅晶片 去除机理 Hydrodynamics Machining Plastic deformation Surface roughness
  • 相关文献

参考文献8

  • 1[1]LING Y,ZHANG K L,WANG F,et al..Investigation on the final polishing slurry and technique of silicon substrate in ULSI[J].Microelectronic Engineering,2003(66):438-444. 被引量:1
  • 2[3]JEONG-DU K.Motion analysis of powder particles in EEM using cylindrical polyurethane wheel[J].International Journal of Machine Tools&Manufacture,2002,42:21-28. 被引量:1
  • 3[5]B S HAN I Z.Deformation and material removal rate in polishing silicon wafcrs[J].Journal of Materials Processing Technology,2003,140(9):641-645. 被引量:1
  • 4[7]SANZ-NAVARRO C F,KENNY S D,SMITH R.Atomistic simulations of structural transformations of siliconsurfaces under nanoindentation[J].Nanotechnology,2004(15):692-697. 被引量:1
  • 5[9]ZHAO J,CAO Z Q,ZHAN J M,et al..Research on hydrodynamic suspension nano-scale polishing for K9 optical glass[C].Proceedings of International Confefence On Surface Finishing Technology and Surface Engineering,Dalian,P.R.China:ICSFT,2006:273-279. 被引量:1
  • 6[12]COOK L M.Chemical processes in glass polishing[J].Journal of Non-Crystalline Solids,1990,120:152-171. 被引量:1
  • 7[13]CHARLES R J.Static fatigue of glass.I[J].Journal of Applied Physics,1958,29(11):1549-1553. 被引量:1
  • 8[14]CLARK D E.Corrosion of glass surfaces[J].Surface Science,1980,100:53-70. 被引量:1

同被引文献116

引证文献11

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部